Certain individuals suffering from trigger finger complain about postoperative finger functions remaining unsatisfactory, especially who have joint contracture problems. Although postoperative management for trigger finger has been proposed, there is no evidence in the literature that demonstrates the effectiveness of such treatment, and there is no standard protocol. In addition, postoperative rehabilitation is not a regular procedure for trigger finger after pulley release surgery.

Purpose: To propose a practical postoperative rehabilitation protocol for trigger finger, and quantitatively evaluate various finger functions before and after surgery.

Research Design

Individuals Suffering from Unilateral Trigger Finger with Joint Contracture (Grade IV, Froimson’s Classification)

- **Intervention Group**
- **Control Group**

Pre-surgery Finger Function Evaluation of the Involved Finger and the Contralateral Intact Finger

Ultrasound-guided Percutaneous A1 Pulley Release

Postoperative Rehab Program

Follow-up Examination of Finger Function at 1 Month after Surgery

Postoperative Rehabilitation Protocol

<table>
<thead>
<tr>
<th>Post-OP</th>
<th>Management</th>
</tr>
</thead>
</table>
| **Week 1** | Edema control and scar management
Compression with Coban
Prevent PIP flexion contracture
Gentle DIP and PIP ROM exercise with day splint; Night splint |
| **Week 2** | Regain smooth tendon excursion
Tendon gliding exercise
Prevent adhesion
Compressive massage
Prevent PIP flexion contracture
Night splint; Joint stretch
Check intrinsic muscle tightness
Passive DIP and PIP flexion with MP extension |
| **Week 3** | Regain full, smooth ROM
Remove splint; Frictional massage; Blocking exercise |
| **Week 4** | Strengthening exercise
Lumbrical muscles; Extrinsic flexor and extensor muscles
Functional activities
Participation in full activities of daily living |

Quantitative Evaluation

A 3D motion capture system was used to quantitatively evaluate the finger movement functions. Each participant was requested to perform a sequential movement of five postures.

The intervention group showed significantly greater improvements in the fingertip workspace, the ROM of DIP joint, the ROM of PIP joint, the ROM of MCP joint, and the total active ROM (TAROM) were calculated.

\[
\text{Workspace}\% = \frac{\text{Workspace}_{\text{post}} - \text{Workspace}_{\text{pre}}}{\text{Workspace}_{\text{base}}} \times 100\%
\]

\[
\text{ROM}\% = \frac{\text{ROM}_{\text{post}} - \text{ROM}_{\text{pre}}}{\text{ROM}_{\text{Normal}}} \times 100\%
\]

\[
\text{TAROM}\% = \frac{\text{TAROM}_{\text{post}} - \text{TAROM}_{\text{pre}}}{270} \times 100\%
\]

Results

The intervention group showed significantly greater improvements in the fingertip workspace (49% vs. 17%), the ROM of DIP joint (16% vs. 4%), the ROM of PIP joint (21% vs. 5%), and the TAROM (17% vs. 5%) than the control group.