New Computation Methods for Geometrical Optics
Contents

4 Paraxial Optics for Axis-Symmetrical Systems .. 87
4.1 Convention of Paraxial Optics ... 87
4.2 Reflecting and Refracting Matrices of Paraxial Optics 88
 4.2.1 Reflecting and Refracting Matrices at a Flat Boundary Surface 89
 4.2.2 Reflecting and Refracting Matrices at a Spherical Boundary Surface ... 91
4.3 Paraxial Optics for Axis-Symmetrical Optical Systems 94
4.4 Cardinal Planes and Cardinal Points of an Optical System 95
4.5 Determination of Focal Points for a Thick Lens 98
4.6 Determination of the Focal Length of Curved Mirrors 100
4.7 Image Position in an Optical System Using Cardinal Points 102
4.8 Lateral Magnification ... 104
4.9 Longitudinal Magnification ... 104
4.10 Focal Lengths of Two-Element Systems Surrounded by Air 105
4.11 The Optical Invariant in Paraxial Optics 108
 4.11.1 The Invariant and Magnification ... 109
 4.11.2 Image Height for Object at Infinity 110
 4.11.3 Data of a Third Ray from Two Traced Rays 111
 4.11.4 Focal Length Determination ... 112
References ... 113

5 The Jacobian Matrix of a Ray with Respect to System Variable Vector 115
5.1 The First-Order Derivative of a Merit Function 115
5.2 The Jacobian Matrix of Ray \bar{R}_i with Respect to Incoming Ray \bar{R}_{i-1} at a Flat Boundary Surface .. 118
5.3 The Jacobian Matrix of Ray \bar{R}_i with Respect to Incoming Ray \bar{R}_{i-1} at a Spherical Boundary Surface 124
5.4 The Jacobian Matrix of Ray \bar{R}_i with Respect to Boundary Variable Vector \bar{X}_i at a Flat Boundary Surface 131
5.5 The Jacobian Matrix of Ray \bar{R}_i with Respect to Boundary Variable Vector \bar{X}_i at a Spherical Boundary Surface 135
5.6 The Jacobian Matrix of Ray \bar{R}_i with Respect to System Variable Vector \bar{X}_{sys} ... 139
5.7 The Jacobian Matrix Between Boundary Variable Vector \bar{X}_i and System Variable Vector \bar{X}_{sys} 142
5.8 The Hessian Matrix Between Boundary Variable Vector \bar{X}_i and System Variable Vector \bar{X}_{sys} 150
Appendix A ... 153
Appendix B ... 155
Appendix C ... 156
Appendix D ... 158
References ... 161
6.1 Jacobian Matrix Between In-plane Coordinates \((x_n, z_n)\) of the Image Plane and the Polar Coordinates \((\alpha_0, \beta_0)\) of a Source Ray .. 164

6.2 The Point Spread Function Based on Irradiance Method 165

6.3 The Spot Diagram Based on Irradiance Method 169

6.4 Theory of MTF for Any Arbitrary Direction of OBDF 170

6.5 MTF for any Arbitrary Direction of OBDF from Ray-Counting and Irradiance Methods ... 173

6.5.1 Ray-Counting Method .. 173

6.5.2 Irradiance Method ... 174

Appendix A ... 181

Appendix B ... 181

Appendix C ... 182

Appendix D ... 183

References ... 186

7 Optical Path Length and Its Jacobian Matrix with Respect to System Variable Vector .. 187

7.1 The Jacobian Matrix of OPL\(_i\) Between \((i-1)\)th and ith Boundary Surfaces ... 187

7.1.1 The Jacobian Matrix of OPL\(_i\) with Respect to its Incoming Ray \(\bar{R}_{i-1}\) ... 188

7.1.2 The Jacobian Matrix of OPL\(_i\) with Respect to Boundary Variable Vector \(\bar{X}_i\) ... 189

7.2 The Jacobian Matrix of OPL between any Two Incidence Points 190

7.3 Computation of Wavefront Aberration ... 195

7.4 The Merit Function Based on Wavefront Aberration 201

References ... 202

8 The Wavefront Shape, Irradiance, and Caustic Surface in an Optical System ... 203

8.1 The Hessian Matrix of the Ray \(\bar{R}_i\) with Respect to its Incoming Ray \(\bar{R}_{i-1}\) at a Flat Boundary Surface ... 204

8.2 The Hessian Matrix of the Ray \(\bar{R}_i\) with Respect to Its Incoming Ray \(\bar{R}_{i-1}\) at a Spherical Boundary Surface ... 206

8.3 Computation of Hessian Matrix \(\partial^2 \bar{R}_i / \partial \bar{X}_0^2\) 208

8.4 The Hessian Matrix of OPL\(_i\) with Respect to the Variable Vector \(\bar{X}_0\) ... 212

8.5 Change of Wavefront Aberration due to Translation of Source Point 214
8.6 Wavefront Shape, Irradiance, and Caustic Surface along a Ray Path .. 218
Appendix

A .. 229
Appendix

B ... 230
References ... 237

Curriculum Vitae ... 239