Voltage-Aware Chip-Level Design for Reliability-Driven Pin-Constrained EWOD chips

2012 ACM/IEEE International Conference on Computer Aided Design

Sheng-Han Yeh, Jia-Wen Chang, Tsung-Wei Huang, Tsung-Yi Ho

http://eda.csie.ncku.edu.tw
Electronic Design Automation Laboratory
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan
Introduction

• Digital Microfluidic Biochip (DMFBs)

 - Benefits
 ■ High throughput
 ■ High sensitivity
 ■ Low cost

 - Applications
 ■ DNA sequencing
 ■ Immunoassays
 ■ Clinical diagnosis
Introduction

• Electrowetting-on-dielectric (EWOD) technique was used to realize DMFBs.
 - 2D microfluidic array: set of basic cells for biological reactions
 - Reservoirs/dispensing ports: for droplet generation
 - Optical detectors: detection of reaction result
 - Droplets: biological sample carrier as basic units to perform the laboratory procedures on a DMFB
Introduction

- Electrowetting-on-dielectric (EWOD) technique was used to realize DMFBs.
 - **2D microfluidic array**: set of basic cells for biological reactions
 - **Reservoirs/dispensing ports**: for droplet generation
 - **Optical detectors**: detection of reaction result
 - **Droplets**: biological sample carrier as basic units to perform the laboratory procedures on a DMFB

![Diagram showing a 2D microfluidic array and droplet system with high voltage to generate an electric field and components like hydrophobic insulation, ground electrode, control electrodes, top plate, and droplet.](Diagram)
Introduction

- Conventional DMFBs
 - Direct addressing for each electrode.

- Pin-constrained issue:
 - As chip size increase, its necessary to limit the number of control pins.

- Broadcast Addressing for pin-constrained problem [Xu et al, DAC’08]
 - Reduce pin count and fabricate cost

![Diagram](a)
```
(a) | e_1 | e_2 |
    | e_3 | e_4 |
    | e_5 | e_6 |
    | e_7 | e_8 |
    | e_9 | e_{10} |
    | e_{11} | e_{12} |
```
```
(c) Pin count: 12
```
```
(d) Pin count: 5
```
Introduction

• Pin-constrained Broadcast Addressing
 - Reduces the pin count by replacing “X” with “1” or “0” to make multiple electrodes share the same control signal.
 - Compatibility is examined among identical and complementary signals.

<table>
<thead>
<tr>
<th>Actuation sequence</th>
<th>e_1</th>
<th>10XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_2</td>
<td>010XX</td>
<td></td>
</tr>
<tr>
<td>e_3</td>
<td>XXX11</td>
<td></td>
</tr>
<tr>
<td>e_4</td>
<td>X101X</td>
<td></td>
</tr>
<tr>
<td>e_5</td>
<td>X01XX</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Pin-constrained Broadcast Addressing

By assigning the same pin for compatible electrode and conduct wire routing, we can obtain a feasible routing solution.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>e_8</th>
<th>e_9</th>
<th>e_{10}</th>
<th>e_{11}</th>
<th>e_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuation sequence</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>Electrode group</th>
<th>Outcome actuation sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e_1, e_2</td>
<td>1 0 0 1 1</td>
</tr>
<tr>
<td>2</td>
<td>e_{11}, e_{12}</td>
<td>0 1 1 1 1</td>
</tr>
<tr>
<td>3</td>
<td>e_6, e_7</td>
<td>1 0 1 1 1</td>
</tr>
<tr>
<td>4</td>
<td>e_3, e_4, e_5, e_8</td>
<td>0 1 0 0 1</td>
</tr>
<tr>
<td>5</td>
<td>e_9, e_{10}</td>
<td>1 1 0 1 0</td>
</tr>
</tbody>
</table>
Introduction

- **Main Challenge**: Trapped Charge Problem
Introduction

• Trapped Charge Problem
 – Actuation voltage > Threshold voltage V_{th}
 - V_{th} is depended on different materials
 - Different actuation voltage for different operation (ex: 15-40V for transportation)
 – **Drawback**: causing the contact angle saturated thus decrease the reliability.

[1] Shaun Berry, Jakub Kedzierski, and Behrouz Abedian “Irreversible Electrowetting on Thin Fluoropolymer Films,
Introduction

• Trapped Charge Problem
 - Different pin addressing would affect the reliability

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Actuation Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁</td>
<td>XXX01</td>
</tr>
<tr>
<td>e₂</td>
<td>100XX</td>
</tr>
<tr>
<td>e₃</td>
<td>01001</td>
</tr>
</tbody>
</table>

Electrode: e₁ 20V, e₂ 20V, e₃ 80V
• Trapped Charge Problem
 - Assign e_1 and e_3 the same pin would decrease reliability
Introduction

- This work focuses on the **chip-level design** of the chip.
 - Reliability Pin Assignment
 - Feasible Wire Routing

![Diagram of chip design with labels: Substrate, Electrode, Electrical pads, Conduction wires, Pin, 2D pin array.](image)
Problem Formulation

• Major Constrains
 – Voltage constraint (Threshold Voltage)
 – Broadcast-addressing constraint
 – Pin-count constraint
 – Routing constraint
Problem Formulation

• Input
 – Electrode set: \(E = \{ e_1, e_2, \ldots e_n \} \).
 – Actuation Sequence of each electrode \(e_i \) (ex: “00100”)
 – Required voltage \(V_{ei} \) of each electrode \(e_i \) (ex: dispensing = 100V, routing = 10V, ….)
 – Threshold voltage \(V_{th} \)
 – Pin constraint \(P \)

• Goal
 – Minimize the value of Max \((V_i^* - V_{ei}) \), \(e_i \in E, V_i^* > V_{th} \)
 – Meet pin constraint and routing constraint

• Output
 – Feasible electrode addressing.
 – Feasible wire routing solution.
Outline

- Introduction
- Problem Formulation
- Algorithms
- Experimental Results
- Conclusion
Algorithm

• Main idea
 – Optimize the reliability while keeping the routability

• The algorithm contains 2 main steps

 Step 1. Incremental Search Method

 Step 2. Simultaneously Broadcast Addressing and Routing
Incremental Search Method

- A value V_s (start from 0) is gradually increasing by 1 for each iteration.
- Under specific V_s, build the voltage-constrained compatibility graph (G_{vcc}).
 - An edge was constructed between two electrode a, b iff
 1. $V_{max_{ab}} - \max(V_{th}, V_{da}) \leq V_{bound}$
 2. $V_{max_{ab}} - \max(V_{th}, V_{db}) \leq V_{bound}$

![Diagram of electrode connections with voltages and constraints]
Incremental Search Method

- If we can find a routing solution under V_s, then we can obtain a feasible solution with $V_{d\text{max}} \leq V_s$

- Try to obtain a feasible routing solution based on G_{vcc}

(a) Original G_c

(b) G_{vcc} with $V_s = 30$

(c) G_{vcc} with $V_s = 10$
Simultaneously Broadcast Addressing And Routing

- Pin Merge
 - Merge **addressed pins** to **unaddressed electrodes** by MCMF
 - Wire routing are conducted after pin merge.
Simultaneously Broadcast Addressing And Routing

- **Min-cost Maximum-flow (MCMF) formulation**
 - The cost of edges are set to HPWL-Extension

![Diagram of network with nodes and edges representing existed pins and unaddressed electrodes, with capacity and cost annotations.](image)

HPWL Extension = 6
Simultaneously Broadcast Addressing And Routing

• Wire Routing
 - For each net in the result of addressing, we start to route them by breadth-first-search (BFS) based algorithm.
 - A fail route occurs when:
 ▪ (1) No routing path exist – drop this addressing solution.
 ▪ (2) Some electrode which is blocked by other electrode. Increase the cost of previous path and reroute again.
5 real-life chip were used for test cases.

<table>
<thead>
<tr>
<th>Chip</th>
<th>Size</th>
<th>#E</th>
<th>P_{max}</th>
<th>Avg. V_{pre}</th>
</tr>
</thead>
<tbody>
<tr>
<td>amino</td>
<td>6 X 8</td>
<td>20</td>
<td>16</td>
<td>32.8</td>
</tr>
<tr>
<td>Multiplex</td>
<td>15 X 15</td>
<td>59</td>
<td>32</td>
<td>17.5</td>
</tr>
<tr>
<td>PCR</td>
<td>15 X 15</td>
<td>62</td>
<td>32</td>
<td>21.9</td>
</tr>
<tr>
<td>Multifunctional</td>
<td>15 X 15</td>
<td>91</td>
<td>64</td>
<td>19.7</td>
</tr>
<tr>
<td>DNA preparation</td>
<td>13 X 21</td>
<td>77</td>
<td>32</td>
<td>20.8</td>
</tr>
</tbody>
</table>
Experimental Result

- Result Table
 - Compared to [10], we obtained low $V_{d_{\text{max}}}$ and successful wire routing in all test cases.

TABLE II: ELECTRODE ADDRESSING COMPARISON BETWEEN [10] AND OURS

<table>
<thead>
<tr>
<th>Chip</th>
<th>[10]</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_{d_{\text{max}}}$</td>
<td>$V_{d_{\text{max}}}$</td>
</tr>
<tr>
<td>amino</td>
<td>57</td>
<td>2</td>
</tr>
<tr>
<td>multiplex</td>
<td>56</td>
<td>24</td>
</tr>
<tr>
<td>PCR</td>
<td>54</td>
<td>40</td>
</tr>
<tr>
<td>multifunctional</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>DNA preparation</td>
<td>57</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>

TABLE III: WIRE ROUTING COMPARISON BETWEEN [10] AND OURS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#Pin</td>
<td>WL</td>
</tr>
<tr>
<td>amino</td>
<td>13</td>
<td>206</td>
</tr>
<tr>
<td>multiplex</td>
<td>7</td>
<td>N/A</td>
</tr>
<tr>
<td>PCR</td>
<td>12</td>
<td>N/A</td>
</tr>
<tr>
<td>multifunctional</td>
<td>12</td>
<td>N/A</td>
</tr>
<tr>
<td>DNA preparation</td>
<td>22</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td></td>
</tr>
</tbody>
</table>
Experimental Result

- The comparison of voltage difference (V_d) distributions for all test cases. ([10] vs. Ours)

Experimental Result

- Result of **multifunctional assay**
- Size: 15x15
- #Electrode: 91
- Pin Constraint: 64
- #Pin: 64
- $V_{dmax} : 0$
Conclusion

• We presented electrode addressing and wire routing algorithm for voltage-aware, reliability-driven pin-constrained EWOD chips.

• The experimental results on a set of real-life applications demonstrated that the proposed approach was very effective and efficient.
• Q & A
Thank You!