Dye-sensitized Solar Cells (DSCs) Based on Nanocrystalline TiO$_2$ and Recent Progress in Taiwan

Jyh-Ming Ting1,*, Dillip Kumar Mishra1, Peter Chen2
1. Department of Materials Science and Engineering
2. Institute of Electro-Optical Science and Engineering
National Cheng Kung University
Tainan, Taiwan
* jting@mail.ncku.edu.tw

ENERGY OPTIONS

Non-renewable
- Fossil fuels
 - Coal
 - Oil
 - Natural gas
- Nuclear fuels
 - Radioactive materials
- Dye-sensitized Solar Cells (DSCs)

Renewable
- Wind
- Hydro
- Solar
- Biomass
- Ocean
- Geothermal
OUTLINE

- Background
- Photocathode or Counter Electrode
- Electrolyte
- Dye
- TiO₂ Photoanode
- Concluding Remarks

BACKGROUND

- DSC: the 3rd generation of solar cells
- The Inspiration

\[
\text{CO}_2 + \text{H}_2\text{O} + \text{Chlorophyll} + \text{Sunlight} = \text{Oxygen} + \text{Carbohydrates}
\]

DSCs

Electrolyte + Dye + Sunlight = Energy
Basic Structure and Reaction Paths

$3I^3(A) + 2e^- (\text{counter electrode}) \rightarrow 3I^-(A^-)$

dye (S) + $hv \rightarrow$ dye$^*(S^*)$

dye (S) + TiO$_2$ \rightarrow e$^-$(TiO$_2$) + oxidized dye (S*)

oxidized dye (S*) + $I^-(A^-) \rightarrow$ dye (S) + $I^3(A)$

"Dye sensitized solar cell"

Population: Taiwan/World = ~0.33%
PHOTOCATHODE OR COUNTER ELECTRODE

- Mostly Pt-coated
 - Thermal evaporation
 - Sputter deposition
 - Thermal decomposition of chloroplatinic acid followed by heat treatment (450 °C)
- Activity of Pt is important for the reduction of the tri-iodide ions.

Counter Electrodes Having CNTs

- The DSC containing the PEDOT films with 0.6 wt.% of MWCNT on stainless steel as counter electrode had the best cell performance of 8.08%
ELECTROLYTE

- Liquid Electrolyte
 - Tri-iodide/Iodine redox system
 - Redox potential ~ 0.4 vs NHE
- Gel Electrolyte
- Solid-state Electrolyte

Gel Electrolyte

The characteristics of liquid electrolyte
- reduced the dye fast (high ionic conductivity)
- penetrate into the TiO₂ easily

Problems of liquid electrolyte in solar cell
- difficulty in long-term sealing (leakage of electrolyte)
- volatility of electrolyte
- toxicity of electrolyte
- desorption of dye

Prepare gel state electrolyte for solar cell
Polyvinyl Acetate (PVA) and Polyacrylonitrile (PAN) have different glass transition temperatures (Tg).

<table>
<thead>
<tr>
<th>System</th>
<th>η (%)</th>
<th>F.F.</th>
<th>Isc</th>
<th>Voc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid (MPN-based)</td>
<td>6.57%</td>
<td>0.63</td>
<td>14.3</td>
<td>735.3</td>
</tr>
<tr>
<td>Sol state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVA -15w%</td>
<td>5.02%</td>
<td>0.59</td>
<td>12.14</td>
<td>689.8</td>
</tr>
<tr>
<td>PVA -30w%</td>
<td>4.98%</td>
<td>0.61</td>
<td>11.6</td>
<td>705.4</td>
</tr>
<tr>
<td>Insolubility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poly (AN-co-VA), copolymer (3w%)</td>
<td>5.51%</td>
<td>0.61</td>
<td>12.2</td>
<td>738.5</td>
</tr>
</tbody>
</table>

Polyvinyl Acetate (PVA) and **Polyacrylonitrile (PAN)** are used in different systems for photovoltaic applications.

The diagram shows the relationship between potential and photocurrent density for different systems, indicating higher efficiency and conversion under certain conditions.
Categories of Dyes

- Ru-complex sensitizer
 - N3, N719

- Organic sensitizer
 - D-π-A systems: D149, D205, YD-2

Engineering of Dye Molecules

- N749 Ru(SCN)$_3$L’
 - (L’=4,4’,4”-tri carboxy-2,2’:6’,2”-terpyridine)
Thiophene: C₄H₄S

N3: 7.7%
CYC-B1: 8.54%
CYC-B11: 11.5%

\[
\begin{align*}
\text{Absorbance (a.u.)} & \quad \text{Wavelength (nm)} \\
0.1 & \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \quad 800 \\
\end{align*}
\]

\[
\begin{align*}
\text{Molar Absorbance (L mol}^{-1} \text{cm}^{-1}) & \quad U / V \\
0 & \quad 0.4 \quad 0.6 \quad 0.8 \\
\end{align*}
\]

The higher value of η of the CBTR-sensitized cell (relative to that of the N719 cell) arose from its higher value of Jsc, which attributed to the presence of the NHC ligand (a strong σ donor).
Dye: Thiocyanate (NCS) free

TFRS-2: 1000h illumination at 60°C efficiency from 6.65 to 6.32%

Organic Sensitizer Dye

Organic dyes with large conversion efficiencies are typically composed of a donor-π-acceptor (D–π–A) structure with a well defined architecture.

e^-

D π A TiO$_2$
Porphyrin-based

2.4 μm thick
YD-2/D-205: 6.9% (world record)
YD-2: 5.6%

An 11% (11 μm + 5 μm) solar-to-electric power conversion efficiency by using YD-2 dye
(World Record Organic dye)

TiO₂ PHOTOANODE

RDSC
Hydrothermally Synthesized TiO₂ Nanopowders

Highly Effective TiO₂ Blocking Layer

Effects of Sintering & Surface Treatment Conditions

FDSC
Two-step Synthesized TiO₂ Mesoporous Beads
- Excellent Optical Scattering Effects
- Ultra-fast Electron Transport Rates

Binder-free Process
Electron Transport/Transfer

1. Electron injection
2. Charge collection
3. Regeneration
4. Luminescence
5. Recombination
6. Interception

Hydrothermal Synthesis of TiO₂ Nanopowders

<table>
<thead>
<tr>
<th>No.</th>
<th>Conc.</th>
<th>T</th>
<th>Citric acid</th>
<th>Time</th>
<th>TiO₂ phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.9M</td>
<td>0°C</td>
<td>Pre-added</td>
<td>4hr</td>
<td>Anatase</td>
</tr>
<tr>
<td>2.</td>
<td>0.9M</td>
<td>0°C</td>
<td>Post-added</td>
<td>4hr</td>
<td>Anatase</td>
</tr>
<tr>
<td>3.</td>
<td>0.9M</td>
<td>0°C</td>
<td>None</td>
<td>4hr</td>
<td>Rutile</td>
</tr>
<tr>
<td>4.</td>
<td>0.9M</td>
<td>RT</td>
<td>Post-added</td>
<td>4hr</td>
<td>Anatase</td>
</tr>
<tr>
<td>5.</td>
<td>0.1M</td>
<td>0°C</td>
<td>Post-added</td>
<td>2hr</td>
<td>Anatase</td>
</tr>
<tr>
<td>6.</td>
<td>1.5M</td>
<td>0°C</td>
<td>Post-added</td>
<td>2hr</td>
<td>Anatase</td>
</tr>
<tr>
<td>7.</td>
<td>0.9M</td>
<td>0°C</td>
<td>Post-added</td>
<td>2hr</td>
<td>Anatase</td>
</tr>
<tr>
<td>8.</td>
<td>0.9M</td>
<td>0°C</td>
<td>Post-added</td>
<td>10hr</td>
<td>Anatase</td>
</tr>
<tr>
<td>9.</td>
<td>P25</td>
<td></td>
<td></td>
<td></td>
<td>Rutile+Anatase</td>
</tr>
</tbody>
</table>
Oxygen vacancy concentration dominated effect
The increase in the cell efficiency is attributed to the interplay among:
- reduced oxygen vacancies
- a higher C-C sp² to sp³ bonding ratio
- a better incident photon to conversion efficiency
- enhanced dye

Highly Effective TiO₂ Blocking Layers (FDSC)

- Sputter-deposited, 10-nm TiO₂ as blocking layer
 - Reports show that
 - the required thickness ranges from 100 to 200 nm
 - the exclusively used crystalline phase of a TiO₂ blocking layer is anatase.
Effective blocking to reduce the dark current
TiO$_2$ Mesoporous Beads for FDSC

1. Excellent Optical Scattering Effects
2. Having Ultra-fast Electron Transport Rates

A TiO$_2$ bead is a spherical particle consisting of many TiO$_2$ nanoparticles.

Sol-gel process + Hydrothermal process

Sample B 5 μm P25 Samples C to F 5 μm Beads
3 μm P25 3 μm P25

Percentage Increase

J_{sc} V_{oc} FF η
Bind-free Process for FDSC

- **TiO$_2$ suspension solution**: P25 powder + ethanol + acetylacetone
- **Charge solution**: iodine + ketone + DI water

CONCLUDING REMARKS

- Dyes have been modified for improving absorption and the efficiency. Ruthenium complex (CYC-B11) 11.5% and Porphyrin based (YD-2) 11% dyes have given the best efficiency as compared to N3/N719.
- Using 0.6% MWNT in PEDOT-PSS as counter electrode produced an efficiency of 8.08% on SS substrate, 7.71% on FTO as compared to 7.7% for conventional Pt on FTO.
- PAN-VA based gel electrolyte produced an efficiency 6.43% and very close to the conventional liquid electrolyte (6.57%) under similar conditions.
- **Anode**:
 - Binder free paste by electrophoresis produced an efficiency as high as 4.57% for flexible PEN substrates.
 - TiO$_2$ blocking layer improved the efficiency by 25% in flexible PEN substrate.
 - Graphene modified TiO$_2$ paste improved the efficiency of cell by 28%.
ACKNOWLEDGEMENTS

- Jyh-Ming Ting, National Cheng Kung University
- YL Lee, National Cheng Kung University
- Kun-Mu Lee, ITRI
- Kuo-Chuan Ho, National Taiwan University
- Chen-Yu Yeh, National Chung Hsing University
- E. W.-G. Diau, National Chiao Tung University
- W.-R. Li, National Central University
- Chun-Guey Wu, National Central University
- Yun Chi, National Tsing Hua University
- Pi-Tai Chou, National Taiwan University
- NSRRC, Hsinchu
- Instrumentation center, NCKU
- National Science Council, Taiwan, NSC-99-2622-E-006-010-CC2

Thank you for your attention