建立基本控制測量網形平差及點位速度場變化量分析模式
(期末報告修定本)

受委託者：國立成功大學
研究主持人：曾清涼 教授
共同主持人：余致義 講師

楊名 副教授

研究員：羅正方 博士
研究助理：鄭鼎耀 博士生

內政部土地測量局委託研究報告
中華民國九十二年十二月
目錄

目錄.. 1

圖目錄.. III

表目錄.. IV

摘要... 1

第一章 前言... 3

1-1 案例緣起.. 3

1-2 計畫目的... 3

第二章 辦理方法.. 4

第三章 文獻資料收集及分析... 10

3-1 平差軟體功能文獻收集及分析.................................. 10

3-2 速度場變化量模式文獻收集及分析.......................... 11

3-3 網形平差及速度場參數估計理論基礎..................... 15

第四章 軟體開發說明... 25

4-1 軟體規格... 25

4-2 模組規格表... 46
建立基本控制測量網形平差及點位速度場變化分析模式

（期末報告修正本）

圖目錄

頁次

圖 2-1「建立基本控制測量網形平差及點位速度場變化量分析模式」
研究案辦理流程圖 .. 5
圖 2-2 網形平差核心程式之最小約制網平差流程圖 6
圖 2-3 網形平差核心程式之強制附合平差流程圖 7
圖 2-4 成果報表輸出流程圖 ... 8
圖 2-5 求解速度場、變形量分析及內插程式流程圖 9
圖 3-1 點位二維坐標內插等值線圖 13
圖 3-2 協方差函數示意圖 .. 14
圖 4-1 基本控制測量網形平差及點位速度場模型建立軟體 架構圖 27
圖 4-2 資料流程圖的組件說明 .. 28
建立基本控制測量網形平差及點位速度場變化分析模式

(期末報告修正本)

表目錄

页次

表 3-1 Trimble、Turbo-Net、Bernese 部分功能比較表 11
表 3-2 速度場變化量分析法比較法 14
Abstract

Land Survey Bureau (LSB) of Ministry of Interior (MOI) introduces "Establish adjustment basic control network and deformation model project". With the ability of new technologies such as the Global Positioning System (GPS) to establish basic survey control points of TWD97 coordinates over large areas more effectively than conventional triang-trilateration it is necessary to consider the needs of both data processing and management requirements for GPS survey control network adjustment. With the establishment of standard procedures of several foreign GPS software it is an appropriate time to develop a Chinese GPS network adjustment software in LSB. This software system should do network adjustment to integrate all kinds of GPS baseline solutions from different commercial GPS packages. Its workflow must be efficient, highly optimized and standardized with combined adjustment of GPS and triang-trilateration measurements to fulfill the advancement of GPS technology.

Since Taiwan is seated on the boundary of Eurasia and Philippine Sea plate, there is also a need to consider the continuous effects of crustal deformation on basic control points for the foreseeable future. A practical investigation into the deformation and velocity grid model of current TWD97 datum is also contained within this project. A graphical vector presentation of adjustment result can be helpful for analysis of ground movement, because usually a huge amount of observations is adjusted simultaneously. This research could reach the goals that requirements to maintain national geodetic datum for basic control survey are fulfilled and further requirements of fundamental scientific studies are provided.
摘要

內政部土地測量局為辦理基本控制點資料處理及後續管理維護工作需要，考量以往均使用國外廠商研發之網形平差計算軟體，研擬「建立基本控制測量網形平差及點位速度場變化量分析模式」研究計畫，其主要目的為研發中文化網形平差計算軟體，整合現有商用衛星定位測量基線計算軟體成果，加強現有平差計算軟體功能，聯合衛星定位測量基線成果及地面角邊觀測成果進行網形平差計算，作爲建立標準化之網形平差計算作業程序（SOP）之基礎，以落實 GPS 衛星定位測量之發展。又因臺灣地區位處亞大陸板塊及菲律賓海板塊劇烈碰撞地帶，頻繁的地殼變動造成基本控制點坐標系統變形嚴重，因此一併建立具實用價值之點位速度場方格網模型，輔以變位等值圖及速度場等值圖等圖形資訊，以分析 TWD97 坐標系統受地殼變動等因素所產生之變形量及速度場，期能達到維護國家基本控制測量框架之目的及提供其他學術研究領域之附加價值，協助完成國家基本科學之建立。
第一章 前言

1-1 計畫緣起

內政部土地測量局運用 GPS 衛星定位測量技術辦理三等、四等基本控制測量，以往均使用國外廠商研發之網形平差計算軟體，因架構於 DOS 作業系統下，且採用英文操作介面，有其使用上之限制，亟需研發一套中文化網形平差計算軟體，以落實 GPS 衛星定位測量之發展，並作為建立內政部土地測量局辦理網形平差計算標準作業程序 (SOP) 之基礎。另臺灣地區位處歐亞大陸板塊及菲律賓海板塊劇烈碰撞地帶，頻繁的地殼變動造成基本控制點坐標系統變形嚴重，因此應一併建立一套具實用價值的點位速度場方格網模型，以分析 TWD97 坐標系統受地殼變動之影響程度，進而達到維護國家基本控制測量框架之目的。

1-2 計畫目的

一、分析現有商用衛星定位測量基線計算軟體功能，重新設計乙套平差計算軟體。

二、聯合衛星定位測量基線成果及地面角邊觀測成果進行網形平差計算，且具中文化操作介面及線上（即時）操作說明，提升使用者辦理網形平差計算之便利性。

三、內政部土地測量局辦理基本控制測量之網形平差計算，其資料分析需再經由不同程式進行格式轉換或成果分析，其過程甚為繁瑣，本網形平差計算軟體研發完成後，不僅可獲得點位完整之誤差量、改正數、坐標成果及圖形等相關成果資料，且將各階段檢驗閾值予以指標化、自動化，具有提升成果分析及品質管制之效能。

四、包含點位速度場分析功能，在具有不同時期觀測資料地區，即可獲得該地區 2 公里x2 公里之速度場方格模型，若再輔以變位等值圖及速度場等值圖等圖形資訊，可方便分析該地區受地殼變動速度場等因素產生之變形量，達到維護國家基本控制測量框架之目的。

五、協助內政部土地測量局建立基本控制測量網形平差計算之標準作業程序，並擴大提供軟體及相關技術供外界使用，對於提升基本控制測量作業之標準化具正面意義。
第二章 辦理方法

『建立基本控制測量網形平差及點位速度場變化量分析模式』研究案辦理方法可分為（辦理流程如圖 2-1）：

一、蒐集現有 GPS 網形平差軟體資料及文獻，比較分析其功能優劣，作
為研發一套中文化網形平差軟體之依據。

二、蒐集兩種以上用於分析點位速度場模型方法之資料及文獻，比較分
析其功能優劣，作爲建立具實用價值之點位速度場方格網模型之依
據，以分析 TWD97 坐標系統受地殼變動之影響程度。

三、開發「基本控制測量網形平差及點位速度場軟體」，網形平差核心
程式流程詳如圖 2-2(最小約制平差流程圖)、圖 2-3(強制附合平差
流程圖)、圖 2-4 成果報表輸出流程圖，求解速度場、變形量分析及
內插程式流程詳如圖 2-5。

四、「基本控制測量網形平差及點位速度場軟體」操作訓練。

五、撰寫「建立基本控制測量網形平差及點位速度場變化量分析模式」
研究報告。
圖 2-1 「建立基本控制測量網形平差及點位速度場變形量分析模式」研究案
辦理流程圖（最小約制及強制套合流程圖詳如圖 2-2 及圖 2-3）

採用歐拉向量法、多面函數擬合法及最小
二乘共置法分析點位
速度場模型之方法及
內插方法

軟體模組設計（Windows平台）

網形平差核心
程式設計
（含最小約制及
強制套合）

最小二乘共置法

比較優劣

歐拉向量法

劣

多面函數擬合法

納入研究報告

方法採納，用
以解點位速
度場及變形
分析及內插

程式設計分析
與修正測試

未通過

通過

相關可行性評
估建議，撰寫
報告書

軟體操作訓練
圖 2-2 網形平差核心程式之最小約制網平差流程圖

1. 計劃名稱與屬性
 - Siaex file
 - GPSurvey
 - TGO ascii
 - 角邊觀測資料

2. 讀取基線成果

3. 相同點位判定值測試
 - 未通過 → 修改點位資料
 - 通過

4. 重覆基線及基線閉合差判定值測試
 - 未通過 → 修改重覆基線及基線閉合差最大處
 - 通過

5. 測站先驗誤差設定

6. 最小約制網平差

7. 後驗方差卡方測試
 - 未通過 → 最小約制偏差及可靠度分析
 - 通過 → 固定観測重權重因子

8. 測站對點誤差
 - 測站儀器誤差

9. 調整權重因子
 - 進行粗差觀測量剔除
圖2-3 網形平差核心程式之強制附合平差流程圖

輸入強制附合平差初步資料

固定一點平差結果 ↔ 約制點位坐標檢核報表

強制附合平差

檢視平差報表

平差結果可接受否

否

可

成果報表輸出

約制點位坐標及先驗誤差

大地基準參數

三度分帶投影參數

相對誤差橈圓精度限制
圖 2-4 成果報表輸出流程圖

1. 點位坐標成果及誤差
2. 點位坐標改正數檢核
3. 內、外可靠度
4. 觀測量改正數與標準
 改正數檢核
5. 網形平差統計測試與檢核
6. 未知數協方差矩陣
7. 絕對誤差構圖
8. 相對誤差構圖
9. 距離及方位角檢核

結東
圖 2-5 求解速度場、變形量分析及內插程式流程圖

1. 計劃名稱與屬性

2. 讀取不同時期平差成果檔案

3. 檢核各期最小約制及強制附合平差結果與速度量先驗資料設定

 通過

 否

4. 相同點位判定

 通過

 修改點位資料

5. 以最小二乘共軛法附加參數進行速度平差

 通過

 剔除錯誤觀測值

6. 點位速度量卡方測試

 通過

 進行速度場內插

7. 輸出速度場報表及圖形資料
第三章 文獻資料蒐集及分析

3-1 平差軟體功能文獻蒐集及分析

本研究案就有關 GPS 網形平差計算軟體蒐集三種商用套裝軟體及國外知名學術機構研發之平差軟體，分別為 GSurvey 中之 Trimnet 模組、TOPCON 之 Turbo-Net 模組及 Bernese 軟體等，討論其部分功能，包含中文化、作業系統、選單操作、點位先驗精度約制、地面角邊觀測資料輸入、輸入、地圖投影、自動化、圖形輸出、速度場及點位變形量分析、使用便利性及平差成果品質等，詳如表 3-1。各平差軟體均有其特色及限制，而在實際應用上雖能符合使用者基本之需求，但皆為英文版本（曾清涼、余致義、何慶雄、劉啓瑞、楊名，1998），操作學習上增加困擾，雖具有線上輔助功能，但因語言關係，無法發揮其功效，使基層使用者操作上益增其困難度，因此需發展一套中文化的平差作業軟體，而其功能特色應整合現行各套軟體之優點。
表 3-1 Trimnet、Turbo-Net、Bernese 部分功能比較表

<table>
<thead>
<tr>
<th>功能</th>
<th>軟體名稱</th>
<th>Trimnet</th>
<th>Turbo-Net</th>
<th>Bernese</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>中文化</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>作業系統</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>選單操作</td>
<td>○</td>
<td>○/x</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>負位前期順序約制</td>
<td>×</td>
<td>○</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地面測角測定資料輸入</td>
<td>△</td>
<td>○</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>橋樑參數輸入</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地圖投影</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自動化</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>圖形輸出</td>
<td>○</td>
<td>△</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>速度場及時間變形量分析</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>使用便利性</td>
<td>○</td>
<td>△</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平面成果品質</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

×：否 △：有 ○：佳

3-2 速度場變化量模式文獻蒐集及分析

常用的速度場變化量內插及分析方法計有歐拉(Euler)向量法、多面函數
擬合法和最小二乘共置法(Colocation)等三種方法(曾清潦、余長義，2001)：(劉敬南等，2001)。分述如下：

1. 權拉(Euler)向量法：最為常用且計算方法單純，具有地形學上的意義。
 但是測區內必須擁有點位佈設均勻與數量多的條件。而且須有形變的一致性，也就是在各時期內
 點與點之間具有共同的旋轉及平移量。

2. 多面函數擬合法：其基礎觀點源自於 Hardy，1971 文；任何一個圓滑數學
 表面總可以用一系列的有規則的數列表面的總和
 以任意精度逼近。任何一個數學表面上的點 \((x,y)\)
 處的速度 \(V(x,y)\) 可表達成下列之函數：

 \[
 V(x,y) = \sum_{i} \alpha_i Q(x,y; x_i, y_i) \tag{3-1}
 \]

 式中 \(Q(x,y; x_j, y_j)\) 為核函數；\(\alpha\) 為所取結點個數；
\[\alpha_j (j=1,2, \ldots, u) \] 為待估參數，\(Q(x,y;x,y) \) 係數

在地殼變形分析中一般採用具有對稱性正雙曲線

\[Q(x,y;x,y) = \left((x-x_1)^2 + (y-y_1)^2 + \delta^2 \right)^\beta \quad (3-2) \]

其中 \(\delta \) 為平滑因子，一般由經驗或試驗獲得，根
據（劉經南等，2001）文獻所述 \(\delta \) 取為一正小數或
零（如 0.01），\(\beta \) 可取為 \(\frac{1}{2} \)、1、\(-\frac{1}{2} \) 等，但常取
為 \(\frac{1}{2} \)（正雙曲線函數）。（3-1）式以矩陣方式表
示為：

\[V = Q \alpha \quad (3-3) \]

其觀測方程式為

\[e = Q \alpha - L \nu \quad (3-4) \]

式中 \(e \) 為速度 \(V \) 之剩餘誤差，\(L \nu \) 為速度 \(V \) 之觀測量，
於是按最小二乘法求得未知參數 \(\alpha \) 之解為：

\[\alpha = \left(Q^T Q \right)^{-1} Q^T L \nu \quad (3-5) \]

求得各結點在 \(N, E \) 方向上的速度分量後，進行疊
加即可得各結點上平面運動速度量。

3. 最小二乘共置法（Moritz, 1973）：用於變形分析及內插應用的觀點如下：

任何一個最小二乘法平差裡，剩餘誤差 \(v \) 須符合偶
然性誤差的假設，而事實上因於網形變形模型的取
捨，造成所餘的框架網形變形有很高的系統性，稱
為誤差 \(S = \langle S_x, S_y \rangle \)，其特性可以用統計的協變方函
數表示，並具有誤差傳播性質。

以 \(\Delta \) 表示兩期觀測相對於所予安定基準之位移向量，\(\Delta S \) 與 \(\Delta \) 分別為兩期
觀測的設計矩陣，\(X \) 表第一期平差坐標參數，並取一具有統計特性之誤差 \(S \)
其觀測方程式可列為：
\[
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix} =
\begin{bmatrix}
A_1 & 0 \\
A_2 & A_2
\end{bmatrix}
\begin{bmatrix}
X_1 \\
d
\end{bmatrix} + S -
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
\tag{3-6}
\]

如同圖 3-1 所示，以最小二乘共組法預估 P 點速度量訊號 S 的公式為：

\[
\hat{S} = C_{S \ell}((A^T PA)^{-1} + Q_S)^{-1}(\ell - A\hat{X})
\tag{3-7}
\]

X 為未知參數，其解為：

\[
\hat{X} = (A^T ((A^T PA)^{-1} + Q_S)^{-1} A)^{-1} A^T ((A^T PA)^{-1} + Q_S)^{-1} \ell
\tag{3-8}
\]

\(C_{S \ell}\) 為具有兩期觀測之共同點的變形量協方差矩陣。若 n 個共同點，其方陣大小為 2n×2n，\(C \bar{P}\) 為轉換點 P 與這 n 個共同點之間變形量的協變方差矩陣，其階數為 2n×2n。

由上可見最小二乘共組法求定點位速度場的核心問題是如何建立 \(C_{ij}\) 與 \(C\) 矩陣諸元素 \(C_{ij}\)，表示訊號間統計的相關性，也稱為協方差函數。常取高斯型函數為相關函數，用來計算無方向性平穩均勻隨機場的協方差，正好滿足其距離縮短而增大的特性，其公式為：

\[
c_{ij} = c_{\sigma e} e^{-2d^2} = c_{\sigma e} e^{-\frac{1}{2}(\xi - x_j)^2 + (\eta - y_j)^2} \tag{3-9}
\]
一般而言，當地表因震源或板塊運動而發生瞬間變形或持續變形時，除了地形及地體構造影響變形量或速度量之大小外，點位間之變形量及速度量之關係亦與點位間之距離有關，因此，選用前述之高斯型函數為相關函數時，當兩點相距愈近，協方差愈大，超出一定距離，協方差可視為零值。其示意圖如下：

圖 3-2 協方差函數示意圖

4. 前述方法分析：前述各種分析方法各有其優缺點，詳如表 3-2。

<table>
<thead>
<tr>
<th>分析法</th>
<th>優點</th>
<th>缺點</th>
</tr>
</thead>
</table>
| 歐拉向量法 | 1. 具有地形學上的意義。
 | 2. 明確表示點位的速度量。 | 1. 應符合點位佈設均勻與數量多的條件。
 | | 2. 須具同一剛體形變的一致性。 |
| 多元變數整合法 | 1. 核函數矩陣具統計意義。
 | 2. 對測區之剛彈性沒有要求。 | 1. 須先計算點位的速度量。
 | | 2. 平滑因子 δ^2 由經驗或試驗獲得。
 | | 3. 僅以單維方式處理各分量速度。 |
| 最小二乘共置法 | 1. 理論模式嚴密，具統計意義。
 | 2. 對測區之剛彈性沒有要求。
 | 3. 同時考慮平面二維之速度量。 | 1. 如何建立 C_p 與 C 矩陣諸元素 C_p，
 | | 表示訊號間統計的相關性，為主要問題。 |

經由上述分析結果，為建立一套完整且全面的整體速度場，可選擇利用最小二乘共置法附加參數計算並估各點位的速度量。

表 3-2 速度場變化量分析法比較表

14
3-3 網形平差及速度場參數估計理論基礎

一、GPS 基線向量方程式

GPS 基線向量網形平差就是利用測站的 TWD97 坐標 \((x, y, z)\) 與測站間的基線
向量值 \(\{\Delta x_{ij}, \Delta y_{ij}, \Delta z_{ij}\}\)，列出如下的一組觀測方程：

\[
\begin{bmatrix}
\nu_{\Delta x} \\
\nu_{\Delta y} \\
\nu_{\Delta z}
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
dX_i \\
dY_i \\
dZ_i
\end{bmatrix} +
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
dX_j \\
dY_j \\
dZ_j
\end{bmatrix} -
\begin{bmatrix}
\Delta X_{ij} - X_i^0 + X_j^0 \\
\Delta Y_{ij} - Y_i^0 + Y_j^0 \\
\Delta Z_{ij} - Z_i^0 + Z_j^0
\end{bmatrix}
\]

(3-10)

與此相對應的方差-協方差陣 \(C_{ij}\)，協因數陣 \(Q_{ij}\) 和權陣 \(P_{ij}\) 分別為：

\[
C_{ij} =
\begin{bmatrix}
\sigma_{\Delta X}^2 & \sigma_{\Delta X \Delta Y} & \sigma_{\Delta X \Delta Z} \\
\sigma_{\Delta Y \Delta X} & \sigma_{\Delta Y}^2 & \sigma_{\Delta Y \Delta Z} \\
\sigma_{\Delta Z \Delta X} & \sigma_{\Delta Z \Delta Y} & \sigma_{\Delta Z}^2
\end{bmatrix}
\]

(3-11)

\[
Q_{ij} = \frac{1}{\sigma_0^2} C_{ij}
\]

(3-12)

\[
P_{ij} = Q_{ij}^{-1}
\]

(3-13)

式 (3-10)、(3-12) 中：

\(\sigma_0\) 為先驗單位權中誤差。

\(\nu_{\Delta x}, \nu_{\Delta y}, \nu_{\Delta z}\) 則為基線向量之剩餘誤差。

\(x_i^0, y_i^0, z_i^0\) 及 \(x_j^0, y_j^0, z_j^0\) 爲測站 \(i\) 及 \(j\) 的近似值而 \(dx, dy, dz\) 及
\(dX, dY, dZ\) 爲其改正值。
二、地面測量角邊及高程觀測方程式

地面觀測量寫為地心地固卡氏坐標分量差 (ΔX, ΔY, ΔZ) 及測站地面坐標 (φ, λ)如下。

方位角：
\[A_i = \tan^{-1} \left(\frac{-\sin \lambda_1 \Delta X + \cos \lambda_1 \Delta Y}{-\sin \phi \cos \lambda_1 \Delta X - \sin \phi \sin \lambda_1 \Delta Y + \cos \phi \Delta Z} \right) \] (3-14)

垂直角：
\[\nu_i = \sin^{-1} \left(\frac{\cos \phi \cos \lambda_1 \Delta X + \cos \phi \sin \lambda_1 \Delta Y + \sin \phi \Delta Z}{\sqrt{\Delta X^2 + \Delta Y^2 + \Delta Z^2}} \right) \] (3-15)

距離：
\[s = \sqrt{(\Delta X)^2 + (\Delta Y)^2 + (\Delta Z)^2} \] (3-16)

高程差：
\[h = \cos \phi \cos \lambda_1 \Delta X + \cos \phi \sin \lambda_1 \Delta Y + \sin \phi \Delta Z \] (3-17)

為求觀測方程式之設計矩陣，需對卡氏坐標分量取微分，得

\[
\begin{bmatrix}
dA_i \\
d\nu_i \\
ds \\
dh \\
\end{bmatrix} =
\begin{bmatrix}
g_{11} & g_{12} & g_{13} & g_{14} & g_{15} & g_{16} \\
g_{21} & g_{22} & g_{23} & g_{24} & g_{25} & g_{26} \\
g_{31} & g_{32} & g_{33} & g_{34} & g_{35} & g_{36} \\
g_{41} & g_{42} & g_{43} & g_{44} & g_{45} & g_{46} \\
\end{bmatrix}
\begin{bmatrix}
dX_1 \\
dY_1 \\
dZ_1 \\
dX_2 \\
dY_2 \\
dZ_2 \\
\end{bmatrix}
\] (3-18)

(3-9)式中下標 1 代表測站，下標 2 代表測站點，設計矩陣中各係數如下 (Leick, 1995)：
三、位移及位移速度觀測方程式

兩期觀測 l_1 與 l_2 位移模式的基本形式為

$$E(1_1) = A_1 \Delta X_1$$

(3-19)

$$E(1_1) = A_1 (X_1 + d) = A_1 X_1 + A_1 d$$

(3-20)
式中 \(d \) 為相對於所予穩定基準之位移向量，
\(A_1 \) 與 \(A_2 \) 為兩期觀測的設計矩陣，
\(X_i \) 表第一期平差坐標參數，其觀測方程式為

\[
\begin{bmatrix}
 v_1 \\
 v_2
\end{bmatrix} =
\begin{bmatrix}
 A_1 \\
 A_2
\end{bmatrix} X_1 +
\begin{bmatrix}
 0 \\
 A_2
\end{bmatrix} d -
\begin{bmatrix}
 l_1 \\
 l_2
\end{bmatrix}
\] (3-21)

將位移 \(d \) 以兩個觀測時刻 \(t_1 \) 與 \(t_2 \) 間的坐標速度 \(u \) (\(u = d / \Delta t \), \(\Delta t = t_2 - t_1 \)),
即單位時間內坐標參數的變化量表示，則 \(t_1 \) 時刻相應坐標參數為

\[X_i = X_i + d = X_i + (t_1 - t_1) u = X_i + \Delta t \cdot u \] (3-22)

此時，觀測方程式寫為

\[
\begin{bmatrix}
 v_1 \\
 v_2
\end{bmatrix} =
\begin{bmatrix}
 A_1 \\
 A_2
\end{bmatrix} X_1 +
\begin{bmatrix}
 0 \\
 A_2 \Delta t
\end{bmatrix} u -
\begin{bmatrix}
 l_1 \\
 l_2
\end{bmatrix}
\] (3-23)

今賦予具有隨機性協因數矩陣 \(Q \) 的位移向量 \(d \) 或速度向量 \(u \) 的線性函數的隨機約制，以表示相對於時刻 \(t \) 的變形模型如下(陶本藻，1992):

\[
\begin{bmatrix}
 0 \\
 B
\end{bmatrix}
\begin{bmatrix}
 X_1 \\
 d
\end{bmatrix} = 0
\] (3-24)

(1) 當 \(B = I \) 時，表示全部點位位移和速度模型；
(2) 當 \(B = [I \ 0] \) 時，表部份點位位移和速度模型；
(3) 當 \(B = [0 \ 0 \cdots 0 \ 1 \ 0 \cdots 0] \) 時，僅第 \(j \) 元素為 \(1 \)，餘為 \(0 \) 時，表示
單點位移和速度模型。

四、大地基準約制條件

平差所用的觀測方程就是通過上面的方法列出的，但為了使平差進行下去，還必須引入位置基準，引入位置基準的方法一般有兩種，第一種是以 GPS
網中一個點的 ITRF97 坐標作為起算的位置基準，即可有一個基準方程；

[注] 成功大學精密測量研究中心
\[
\begin{bmatrix}
\frac{dx_i}{dt} \\
\frac{dy_i}{dt} \\
\frac{dz_i}{dt}
\end{bmatrix} = \begin{bmatrix}
x_i^0 \\
y_i^0 \\
z_i^0
\end{bmatrix} - \begin{bmatrix}
x_i \\
y_i \\
z_i
\end{bmatrix} = 0
\] (3-25)

第二種是採用積陷自由網基準，引入下面的基準方程:

\[G^T dB = 0\] (3-26)

式中:

\[G^T = \begin{bmatrix}
1 & 0 & 0 & \ldots & 1 & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
E & E & E & \ldots & E
\end{bmatrix}\] (3-27)

\[dB = \begin{bmatrix}
\frac{dx_1}{dt} \\
\frac{dx_2}{dt} \\
\frac{dx_3}{dt} \\
\vdots \\
\frac{dx_n}{dt}
\end{bmatrix} = \begin{bmatrix}
\frac{dy_1}{dt} \\
\frac{dy_2}{dt} \\
\frac{dy_3}{dt} \\
\vdots \\
\frac{dy_n}{dt}
\end{bmatrix}
\] (3-28)

\[\begin{bmatrix}
\frac{dz_1}{dt} \\
\frac{dz_2}{dt} \\
\frac{dz_3}{dt} \\
\vdots \\
\frac{dz_n}{dt}
\end{bmatrix}
\] (3-29)

五、測站坐標或速度向量的約制條件

第三種觀測方程式是在最後階段加入額外之未知數或約制，以測站速度來說，對某一測站之坐標向量 \(X_i\) 在任何時刻 \(t_i\) 與參考時刻 \(t_e\)之坐標向量 \(X_e\)，可表為速度定速 \(\dot{x}\) 之觀測方程式如下:

\[X_i + v_i = I_xX_e + I_x(t_i - t_e)\dot{x}\] (3-30)

式中 \(I_x\) 元素為 0 或 1，同時可針對某些興趣測站由內插速度向量基組中獲得的座標或速度作允許或強制之約制。整個基本控制網 (GPS 控制網) 的變動量顯著性及剛體區域劃分選得通過各種檢定測試，以獲的可靠的參數估計值，其測試流程圖如圖 3-3 所示。
六、點位變動量統計測試方式

(一)全區測試 (Global Test):

主要目的是測試網形變動量 d 是否顯著，亦即與觀測精度做比較，
測試變動量是否純為觀測之偶然誤差所引起，或點位確實有變動。

時段 I 之後變動方 \(\sigma_{a1}^2 = \frac{\nu_1 \sigma_a}{f_1} \)

時段 I 之後變動方 \(\sigma_{a1}^2 = \frac{\nu_1 \sigma_a}{f_2} \)

兩時段共同平差之後變動方 \(\sigma_{a1}^2 = \frac{f_1 \sigma_{a1}^2 + f_2 \sigma_{a2}^2}{f} \) \((3-31) \)

而兩網自由度 \(f = f_1 + f_2 \)

經由轉換至共同基準的變動量 d 及其變動方矩陣我們可求得變動量中
誤差 \(\Omega \).

\[
\Omega^2 = \frac{\Theta^2}{h} = \frac{d^T Q_d d}{h} = \frac{d^T p e d}{h} \quad (3-32)
\]

\[
F^* = \frac{\hat{\Omega}^2}{\sigma_{a1}^2} \quad (3-33)
\]

式中 \(h = u - r_d \); u：位移量個數; \(r_d \)：兩網全部基準量不足

\(F^* \) 爲 F 分佈，今選定一顯著水平 \(\alpha \)，以測試 \(F^* \)。

若 \(F^* \geq F_{h, f, 1-a} \) 則稱變動量顯著（非偶然誤差引起）。

若 \(F^* < F_{h, f, 1-a} \) 則稱變動量不顯著。

(二)局部測試 (Local Test):

因全區測試較不敏銳，較易造成錯誤的判斷，因此可用局部測試
(Local Test)，來彌補全區測試之缺點。

先將位移量分為二組，一組是我們欲作局部測試者，共有 \(k \) 個點位
位移量，另一組有 \(\ell \) 個點位位移量。

\[
d = \begin{bmatrix} d_k \\ d_1 \end{bmatrix} \quad p_d = Q_d + \begin{bmatrix} \frac{1}{\kappa_k} \\ \frac{1}{\kappa_1} \end{bmatrix} = \begin{bmatrix} Q_{kk} & Q_{k1} \\ Q_{1k} & Q_{11} \end{bmatrix}
\]

現在可將 \(d^T Q_d d \) 分為獨立不相關的兩部份，部份是受 \(d \) 影響。

\[
(3-34)
\]
\[d^T Q_d^* = d_k^T \overline{P_{ik} d_k} + \overline{d_1}^T P_{11} \overline{d_1} = \theta_k^2 + \theta_1^2 \] (3-35)

式中 \(\overline{d_1} = d_1 + P_{11}^{-1} \overline{P_{ik} d_k} \)；\(\overline{P_{ik}} = P_{ik} - P_{kj} P_{11}^{-1} P_{ik} \)

可受\(d_1 \)影響的\(d_1^T P_{11} \overline{d_1} \)來做測試

\[\overline{\Omega}^2 = \frac{d_1 P_{11} \overline{d_1}}{\ell} = \frac{\theta_1^2}{\ell} \] (3-36)

\[F_1^* = \frac{\overline{\Omega}^2}{\hat{\sigma}^2_{adj}} \] (3-37)

若 \(F^* \approx F_{1, f, 1-\alpha} \) 則此 \(\ell \) 個坐標有顯著變動。
若 \(F^* < F_{1, f, 1-\alpha} \) 則此 \(\ell \) 個坐標無顯著變動。
圖 3-3 點位變動測試流程圖

自由網平差結果內部坐標 X_r, Q_r, σ_{r}

$$\begin{align*}
\delta &= X - X_r, \\
\sigma &= Q - Q_r
\end{align*}$$

沒有控制點

相對變形分析

以全區測試及各點之單點測試

顯著變動

無顯著變動

對單點測試較顯著即 $d < Q, d_{r}$

測試變形大小是否變動

若有方向角則可測試變形是否旋轉

計算物點 95% 的信心間隔

變動可靠度分析去測試位移量是否由未修測之錯誤 $V_{d raging}$ 之誤差所引起

STOP

有控制點

絕對變形分析

將計算基準轉至共控制點參數

控制點組成之份量的全區測試及單點測試

顯著變動

無顯著變動

對剩餘控制點進行全區測試及單點測試

作物點變動的全區測試及單點測試

計算物點 95% 的信心間隔

變動可靠度分析去測試位移量是否由未修測之錯誤 $V_{d raging}$ 之誤差所引起

STOP
七、可靠度分析

所謂可靠度分析就是指當某一觀測量發生錯誤 $\nabla_0 \varepsilon_i$ 時，會有多少反映在改正數上，可依下式表示

$$
\nabla V_i = -(Q \cdot P)_{i0} \nabla_0 \varepsilon_i = -\tau_i \nabla_0 \varepsilon_i
$$

(3-38)

r_i 及一般所謂之可靠度，是 $Q \cdot P_i$ 矩陣對角線元素，也可解釋為往型自身檢核的能力，而 Data Snooping 主要是以標準化的改正數 W_i 來做測試的

$$
W_i = \frac{\varepsilon_i}{\sigma_{\varepsilon_i}}
$$

W_i 是屬於常態分佈的隨機變數，即 $W_i \sim N(0,1)$

在選定一顯著水平 α 以後，可經由常態分佈查得一臨界值 K_α，當 $|W_i| > K_\alpha$ 時，我們認爲觀測量 ε_i 是錯誤的，反之若 $|W_i| \leq K_\alpha$ 則認為 ε_i 是正確的，Data Snooping 即利用 (3-39) 式逐步來偵測誤差覈測量的。

由 (3-39) 是可發現當某觀測量錯誤 $\nabla_0 \varepsilon_i$，會使 W_i 產生一偏移量 $\nabla_0 W_i$

$$
|\nabla_0 W_i| = \frac{\nabla_0 V_i}{\sigma_{\varepsilon_i}} = \frac{\tau_i \nabla_0 \varepsilon_i}{\sigma_{\varepsilon_i}} = \sqrt{\lambda} = \sqrt{\rho}
$$

(3-40)

當我們選定一測試力 β 時，即可決定出 δ_0，再因其 $\sigma = \sqrt{\tau} \sigma_u$ 故 (3-40) 式可得

$$
\nabla_0 \varepsilon_i = \frac{\delta_0}{\sqrt{\tau}} \sigma_u = \sqrt{\lambda} \sigma_u
$$

(3-41)

在 (3-41) 中 $\nabla_0 \varepsilon_i$ 即為內可靠度，其意義為錯誤達 $\nabla_0 \varepsilon_i$ 有 β 機率可被偵測出來，根據 Baarda 建議 (Kavouras M. 1982)，一般取 $\alpha = 0.1\%$，$\beta = 80\%$ 可得 $K_\alpha = 3.29$，$\delta_0 = 4.17$。由於在作形變測量，對觀測量要求比較嚴格，因此一方面要求各觀測量 τ_i 要比較高，以便偵錯，另一方面可將 α，β 均提高，將觀測量作嚴格的淘汰。
如果 $\nabla \varepsilon_1$ 之誤差未偵出，對座標的影響量

$$\nabla x = (A^T PA)^{-1} A^T P \nabla \varepsilon_1$$ \hspace{1cm} (3-42)

而測試出來點 P_k 之移動量是在 ϕ_k 方向，因此若有未偵出之誤 $\nabla \varepsilon_1$，其影響在 ϕ_k 方向之位移量為

$$\nabla d_{k_1} = \nabla x_k \cos \phi_k + \nabla y_k \sin \phi_k$$ \hspace{1cm} (3-43)

可依 (3-42)(3-43) 式對每一觀測量來計算 ∇d_k 找出其中最大值

$$\nabla d_k = \text{MAX} (|\nabla d_{k_1}|)$$ \hspace{1cm} (3-44)

(3-44) 式可解釋成當影響 k 點位移量最大的觀測量發生誤差未偵測出來，其最大影響量為 ∇d_k，由此可以 ∇d_k 與 P_k 點之位移量 d_k 比較，看位移量 d_k 是否有可能由 ∇d_k 所引起。
第四章 軟體開發成果

4-1 軟體規格

一、軟體開發

「基本控制測量彎形平差及點位速度場模型建立軟體」主要架構在Windows作業平台上，採用GUI介面，程式撰寫軟體以VisualBasic為主要發展介面，並以VisualFortran及VisualC++為輔，發揮其物件元件功能、簡化設計環境、改善資料之存取及使用性、延伸資料的擴充性、更有效率的輸出方式，減少系統重複開發。

二、硬體基本規格

1. Pentium III以上等級個人電腦，硬碟40GB以上，RAM128MB以上。
2. 採用Windows NT 4.0或Windows 2000 Professional作業系統。
3. 選單式操作介面，各類I/O檔案及相關說明文件一律中文化。
4. 相關測試指標應設定閾值量化並加註說明。
5. 軟體操作過程應隨時顯示相關錯誤訊息。

三、軟體技術規格及限制：

輸入部分：各項資料輸入模組，應採用自動化選單點選式操作。
1. 計畫名稱及相關屬性資料：允許中小文化輸入。
2. 處理能力：點數至少2,500點且基線至少7,500條以上。
3. 基線計算成果檔：至少可輸入標準sinex file、GPSurvey(txt file)及T.G.O(asc file)等基線計算成果格式。
4. 可讀取約制點位先驗坐標及精度(標準偏差)。
5. 地面輔助角邊觀測資料：含觀測量種類編碼、前視點點號、測站點號、後視點點號、實測之距離(斜距)、水平夾角、方位角、天頂距(或垂直角)、儀器高、棱鏡高及測站高程等項。
6. 楔球或基準參數：應至少包括TWD67及TWD97，並允許使用者自訂。
7. 二度分帶橫稜卡托投影參數：中央子午線為115°、117°、119°及121°，由使用者視實際辦理地區自行選項。
8. 標準資料交換格式(DXF)參數設定。
9. 網形平差最大、最小續代計算次數。
10. 相同點位計算之容許值。
11. 測站先驗誤差設定，包括儀器高誤差及光學對心誤差等。
12. 觀測值之自動化粗差偵測、剔除及剔除等相關設定。
輸出部分：成果資料輸出之型態，採用檔案輸出及螢幕顯示，並註明相
關格式內容。但第13至17項輸出圖形部分，採用DXF格式
檔案輸出。資料儲存格式，除第10項二度分帶橫軸卡托投
影坐標格式由委託單位規定。
1. 基線重覆性檢核。
2. 基線閉合差檢核。
3. 基線個別多餘數（Local Redundancy）檢核。
4. 內可靠度、外可靠度檢核。
5. 點位坐標改正數檢核。
6. 基線編號，名稱及對應二端點點號與觀測量值。
7. 觀測量改正數與標準化改正數檢核。
8. 網形平差統計測試檢核：至少包括各基線坐標分量 t (Tau) 測試
值及變異因子之卡方 (Chi-square) 測試值等。
9. 權單位中誤差或整體參考方差因子 (Reference variance factor)
檢核。
10. 坐標成果及精度 (標準偏差)：包括三維卡式坐標系統、大地經緯
度坐標系統及二度分帶橫軸卡托投影坐標系統等。
11. 距離及方位角精度檢核。
12. 未知數協方差矩陣（含儲存格式說明）。
13. 絕對誤差楅圖（圖形採DXF格式檔案輸出）。
14. 低於使用者訂定精度之相對誤差楅圖（圖形採DXF格式檔案輸
出）。
15. 點位分布圖（圖形採DXF格式檔案輸出）。
16. 實際觀測基線網形圖（圖形採DXF格式檔案輸出）。
17. 點位變形方向圖及點位速度場向量圖（圖形採DXF格式檔案輸
出）。
18. 速度方向方格網形模（解析度2公里*2公里，採檔案輸出）。
19. 平面坐標轉換成果。
20. 數量統計分析成果。

四、系統模組規劃：
架構圖詳如圖4-1
1. 工作計畫模組。
2. 資料輸入及檢視模組。
3. 基準及投影參數設定模組。
4. 網形平差計算模組。
5. 點位速度場及點位變形量分析模組。
6. 圖形設定及輸出（DXF格式檔案）模組。
7. 成果顯示及輸出模組。
8. 平面坐標轉換模組。
9. 數量統計分析模組。

圖 4-1 基本控制測量網形平差及點位速度場模型建立軟體架構圖
五、資料流程圖

資料流程圖（DFD）是一種表示作業流程的模型工具，以網狀的方式表示出作業（PROCESS）的轉換，以及進出作業的資料流，並藉由資料流來連接各個不同的作業。資料流程圖的組件說明如下：

<table>
<thead>
<tr>
<th>圖形</th>
<th>名 稱</th>
<th>意 義</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>外界實體（External Entity）</td>
<td>代表與系統有關的其他外界機構、單位或個人</td>
</tr>
<tr>
<td></td>
<td>資料流（Data Flow）</td>
<td>表示資料或表報的流動方向</td>
</tr>
<tr>
<td></td>
<td>程序（Process）</td>
<td>表示處理資料的作業單元</td>
</tr>
<tr>
<td></td>
<td>資料儲存所（Data Store）</td>
<td>表示儲存資料或表單的處所</td>
</tr>
</tbody>
</table>

資料流程圖要明確的表達資料在系統中的流向，以及在資料上所作的轉換（Transformation），而且應該是把注意力集中在資料與其轉換的過程上，不用在資料流程圖表達次序性、控制、程序演算法。

資料流程圖首先要建構環境模型，於這一個步驟中須製作概圖，研討系統目標、決定系統範圍，概圖中應描述外界實體與本系統的關係、系統需要輸入什麼資料、系統需要輸出什麼資料，概圖中畫清了環境與系統的界線，但是無須說明系統內部的細節。接下來要建構初步行爲模型，再以事件為主、以資料為主的整合後，彙整事件的回應。軟體流程及各模組流程圖如下：
建立基本控制測量網形平差及點位速度場變化量分析模式

基本控制測量網形平差及點位速度場建立軟體
日期 91/12/23 資料流程圖－成果顯示及輸出 頁次 9/11

工作資料庫

成果顯示及輸出模組

DIF圖檔

成果資料

資料檢核

錯誤訊息
建立基本控制測量網形平差及座標速度場變化量分析模式

基本控制測量網形平差及座標速度場建立軟體

日期 91/12/23 資料流程圖—平面座標轉換模組 頁次 10/11

工作資料庫

轉換後坐標檔

輸出轉換坐標資料

參數設定值

平面坐標轉換

資料檢核

錯誤訊息
建立基本控制测量網形平差及點位速度場變化量分析模式

基本控制測量網形平差及點位速度場建立軟體
日期 91/12/23 資料流程圖—數量統計分析 頁次 11/11

工作資料庫

統計資料

統計資料

統計資料

點位統計

基線統計

成果統計

資料檢核

錯誤訊息
六、資料字典

資料字典(Data Dictionary, DD)是用來表示所有作業，以及作業間之介面關係。內容包括下列各項：
1. 說明資料流(Data Flow)與資料儲存體(Data Store)之意義。
2. 說明資料流與資料儲存體之組成分子。
3. 說明資料元素(Data Element)之單位(Units)與值(Value)。

<table>
<thead>
<tr>
<th>資料組成(Data Composition)所使用之符號</th>
<th>由…組成(composed of)</th>
<th>及(and)</th>
<th>重複(interation)</th>
<th>選擇其中之一(select one of)</th>
<th>額外的(optional)</th>
<th>資料元素</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{ }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

資料字典主要的目的是定義資料，以減輕混淆並說明資料流程圖的細節。因此，在資料流程圖中的資料流與資料儲存體，必須全部在資料字典中有所定義。
參考資料：財團法人資訊工業策進會·教育訓練處·結構化分析

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>計畫資料</td>
</tr>
<tr>
<td>組成</td>
<td>計畫名稱 + 計畫工作目錄 + 使用者姓名 + 計畫描述資料</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>Gpsurvey 基線資料</td>
</tr>
<tr>
<td>組成</td>
<td></td>
</tr>
<tr>
<td>說明</td>
<td>Gpsurvey 產生之基線輸出檔</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>Sinex 資料</td>
</tr>
<tr>
<td>組成</td>
<td></td>
</tr>
<tr>
<td>說明</td>
<td>Software INdependent EXchange format</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>TGO 基線資料</td>
</tr>
<tr>
<td>組成</td>
<td></td>
</tr>
<tr>
<td>說明</td>
<td>Trimble Geomatics Office 產生之基線輸出檔</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>地面觀測資料</td>
</tr>
<tr>
<td>組成</td>
<td>觀測量種類 + 後視點號 + 測站點號 + 前視點號 + 權重 + 觀測量</td>
</tr>
<tr>
<td>說明</td>
<td>觀測量種類：1.距離 2.角度 3.垂直角 4.方位角</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>TurboNet 平差成果資料</td>
</tr>
<tr>
<td>組成</td>
<td></td>
</tr>
<tr>
<td>說明</td>
<td>TurboNet 格式</td>
</tr>
<tr>
<td>資料代號</td>
<td>A7</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>資料名稱</td>
<td>基準參數資料</td>
</tr>
<tr>
<td>組成</td>
<td>基準名稱 + 長半徑 + 扁率</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>投影參數資料</td>
</tr>
<tr>
<td>組成</td>
<td>投影名稱 + 中央經線 + 尺度比 + 横坐標西移量</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A9</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>基線資料</td>
</tr>
<tr>
<td>組成</td>
<td>起始測站名稱 + 結束測站名稱 + X分量 + Y分量 + Z分量 + 觀測量協方差矩陣</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>控制點先驗資料</td>
</tr>
<tr>
<td>組成</td>
<td>控制點名稱 + 坐標種類 + [X坐標 + Y坐標 + Z坐標 + 經度 + 緯度 + 橫球高] + 平面N坐標 + 平面E坐標 + 橫球高] + [X坐標先驗精度 + Y坐標先驗精度 + Z坐標先驗精度 + 經度先驗精度 + 緯度先驗精度 + 橫球高先驗精度] + 平面N坐標先驗精度 + 平面E坐標先驗精度 + 橫球高先驗精度</td>
</tr>
<tr>
<td>說明</td>
<td>坐標種類：1.卡式坐標 2.大地經緯度坐標 3.平面坐標</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A11</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>網形平差設定資料</td>
</tr>
<tr>
<td>組成</td>
<td>基準參數資料 + 投影參數資料 + 基線資料 + 控制點先驗資料</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
<tr>
<td>資料代號</td>
<td>A12</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>資料名稱</td>
<td>點位平差成果資料</td>
</tr>
<tr>
<td>組成</td>
<td>點位名稱 + 坐標種類 + [X坐標 + Y坐標 + Z坐標] + 經度 + 緯度 + 標球高 + 平面N坐標 + 平面E坐標 + 標球高 + [X坐標精度 + Y坐標精度 + Z坐標精度] + 經度精度 + 緯度精度 + 標球高精度 + 平面N坐標精度 + 平面E坐標精度 + 標球高精度</td>
</tr>
<tr>
<td>說明</td>
<td>坐標種類: 1.卡式坐標 2.大地經緯度坐標 3.平面坐標</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A13</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>基線平差成果資料</td>
</tr>
<tr>
<td>組成</td>
<td>起始測站名稱 + 結束測站名稱 + X分量 + X分量改正數 + Y分量 + Y分量改正數 + Z分量 + Z分量改正數 + 觀測量誤差方差 + 多餘觀測分量</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A14</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>點位誤差椭圓資料</td>
</tr>
<tr>
<td>組成</td>
<td>點位名稱 + 誤差椭圓長軸 + 誤差椭圓短軸 + 誤差椭圓長軸方位角</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A15</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>速度場平差資料</td>
</tr>
<tr>
<td>組成</td>
<td>網彎平差設置資料 + {作業日期 + 點位平差成果資料}</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A16</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>點位速度量資料</td>
</tr>
<tr>
<td>組成</td>
<td>點位名稱 + 坐標種類 + [X坐標 + Y坐標 + Z坐標] + 經度 + 緯度 + 標球高 + 平面N坐標 + 平面E坐標 + 標球高 + [X坐標速度量 + Y坐標速度量 + Z坐標速度量] + 經度速度量 + 緯度速度量 + 標球高速度量 + 平面N坐標速度量 + 平面E坐標速度量 + 標球高速度量</td>
</tr>
<tr>
<td>說明</td>
<td>坐標種類: 1.卡式坐標 2.大地經緯度坐標 3.平面坐標</td>
</tr>
<tr>
<td>資料代號：</td>
<td>A17</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>資料名稱：</td>
<td>點位變形量資料</td>
</tr>
<tr>
<td>組成：</td>
<td>點位名稱 + 坐標種類 + [X坐標 + Y坐標 + Z坐標</td>
</tr>
<tr>
<td>說明：</td>
<td>坐標種類：1.卡式坐標 2.大地經緯度坐標 3.平面坐標</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號：</th>
<th>A18</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱：</td>
<td>點位變形量內插資料</td>
</tr>
<tr>
<td>組成：</td>
<td>點位名稱 + 坐標種類 + [X坐標 + Y坐標 + Z坐標</td>
</tr>
<tr>
<td>說明：</td>
<td>坐標種類：1.卡式坐標 2.大地經緯度坐標 3.平面坐標</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號：</th>
<th>A19</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱：</td>
<td>點位速度量內插資料</td>
</tr>
<tr>
<td>組成：</td>
<td>點位名稱 + 坐標種類 + [X坐標 + Y坐標 + Z坐標</td>
</tr>
<tr>
<td>說明：</td>
<td>坐標種類：1.卡式坐標 2.大地經緯度坐標 3.平面坐標</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號：</th>
<th>A20</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱：</td>
<td>DXF資料</td>
</tr>
<tr>
<td>組成：</td>
<td></td>
</tr>
<tr>
<td>說明：</td>
<td>圖形資料交換格式</td>
</tr>
<tr>
<td>資料代號</td>
<td>A21</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>資料名稱</td>
<td>平面坐標轉換控制點資料</td>
</tr>
<tr>
<td>組成</td>
<td>點位名稱 + 控制代碼 + 轉換前N坐標 + 轉換前E坐標 + 轉換後N坐標 + 轉換後E坐標</td>
</tr>
<tr>
<td>說明</td>
<td>控制代碼：0. 不參予計算轉換參數 1. 參予計算轉換參數</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A22</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>平面坐標轉換待轉換點資料</td>
</tr>
<tr>
<td>組成</td>
<td>點位名稱 + 轉換前N坐標 + 轉換前E坐標</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料代號</th>
<th>A23</th>
</tr>
</thead>
<tbody>
<tr>
<td>資料名稱</td>
<td>平面坐標轉換成果資料</td>
</tr>
<tr>
<td>組成</td>
<td>點位名稱 + 轉換前N坐標 + 轉換前E坐標 + 轉換後N坐標 + 轉換後E坐標</td>
</tr>
<tr>
<td>說明</td>
<td></td>
</tr>
</tbody>
</table>

成功大學衛星資訊研究中心
4-2 模組規格表

各模組規格表分別如下：

<table>
<thead>
<tr>
<th>日 期</th>
<th>模組規格</th>
<th>頁次</th>
</tr>
</thead>
<tbody>
<tr>
<td>91/12/23</td>
<td>mnuFile</td>
<td>1/9</td>
</tr>
</tbody>
</table>

模組功能：執行計畫管理

呼叫方式：

<table>
<thead>
<tr>
<th>呼叫模組名稱：</th>
<th>被呼叫模組名稱：</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnuFileNew,mnuFileOpen,mnuFileClose</td>
<td></td>
</tr>
<tr>
<td>mnuFileSaveAs,mnuFileProperties,mnuEdit,mnudelete,mnuFilePrint,dir_name,dir_len,file_name</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>輸入參數</th>
<th>輸出參數</th>
</tr>
</thead>
<tbody>
<tr>
<td>名稱</td>
<td>型態</td>
</tr>
<tr>
<td>Projectname</td>
<td>String</td>
</tr>
</tbody>
</table>

參數意義說明：
projectname：計畫名稱

流程說明：
一、讀取計畫檔
二、檢查計畫是否存在
三、進行計畫管理
基本控制测量网形平差及点位速度场建立軟體

<table>
<thead>
<tr>
<th>日期</th>
<th>91/12/23</th>
<th>模組規格</th>
<th>页次</th>
<th>2/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>模組名稱</td>
<td>mnuInput</td>
<td>模組編號</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

模組功能：讀取基線成果及網形平差成果

呼叫方式：

<table>
<thead>
<tr>
<th>相關模組</th>
<th>呼叫模組名稱：</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnuTrimdata,mnuSinexdata,mnuTGO,mnuTerian,mnuTurboNet,mnuNetAdjust,mnuGpsurveyNet,mnuTNnet,disppont,readctl,dir_name,dir_len,file_name,rsinex,rdtrim,tgo2sum</td>
<td></td>
</tr>
<tr>
<td>被呼叫模組名稱：</td>
<td></td>
</tr>
<tr>
<td>mnuVelocity</td>
<td></td>
</tr>
</tbody>
</table>

輸入參數

<table>
<thead>
<tr>
<th>名稱</th>
<th>型態</th>
<th>態況</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staname</td>
<td>String*2</td>
<td></td>
</tr>
<tr>
<td>From_To</td>
<td>Integer</td>
<td></td>
</tr>
<tr>
<td>Dx、Dy、Dz</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>X、Y、Z</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>SIGMA</td>
<td>Double</td>
<td></td>
</tr>
</tbody>
</table>

參數意義說明：

Staname：點名

From_To：起始方向

Dx、Dy、Dz：X、Y、Z方向差值

X、Y、Z：坐標值

SIGMA：中誤差

流程說明：

一、讀取基線或平差成果檔

二、檢查檔案格式

三、進行轉檔

四、儲存檔案
基本控制测量网形平差及点位速度场建立软体

<table>
<thead>
<tr>
<th>日期</th>
<th>91/12/23</th>
</tr>
</thead>
</table>

模组名称：MnuParameter
模组功能：设定基準转换参数及投影参数
呼叫方式：

<table>
<thead>
<tr>
<th>呼叫模组名称：</th>
<th>be called module name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnuDatum, mnuProjection, dir_name, dir_len, file_name</td>
<td>mnuBaselineAdjust</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>輸入參數</th>
<th>輸出參數</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>名稱</th>
<th>型態</th>
<th>名稱</th>
<th>型態</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraname</td>
<td>String</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a·f</td>
<td>Double</td>
<td>degree</td>
<td>Integer</td>
</tr>
<tr>
<td>central</td>
<td>Double</td>
<td>False</td>
<td></td>
</tr>
</tbody>
</table>

參數意義說明：
Paraname：代號
a：長軸
f：線率之倒數
degree：分帶
central：中央經線
False：横標西移量
SIGMA：中误差

流程說明：
一、讀取基準或投影參數檔
二、檢查參數檔
三、選取或設定參數
四、儲存參數
基本控制测量网差及点位速度场建立软体

<table>
<thead>
<tr>
<th>日期</th>
<th>91/12/23</th>
<th>模组规格</th>
<th>页次</th>
<th>4/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>模组名称</td>
<td>MnuNetAdjust</td>
<td>模组编号</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

模组功能：执行平差
呼叫方式：

<table>
<thead>
<tr>
<th>呼叫模组名称</th>
<th>被呼叫模组名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnuBaselineAdjust, mnuDatum, mnuProjection, dir_name, dir_len, file_name, All_adj, Mini_adj, mnuBaselineChk, mnuResult, killcheck, killnet, makecontrol, freec.exe, fnete.exe, checkcor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>輸入參數</th>
<th>輸出參數</th>
</tr>
</thead>
<tbody>
<tr>
<td>名稱</td>
<td>型態</td>
</tr>
<tr>
<td>SetupFile</td>
<td>String</td>
</tr>
<tr>
<td>DataFile</td>
<td>String</td>
</tr>
</tbody>
</table>

参数意义说明：
SetupFile：规范参数、先验资料等
DataFile：基线或平差成果档
AdjustFile：平差结果
VelocityFile：速度场平差成果

流程说明：
一、读取 SetupFile & DataFile
二、执行平差
三、储存档案
基本控制测量网形平差及点位速度场建立软体

<table>
<thead>
<tr>
<th>日期</th>
<th>91/12/23</th>
<th>模组名称</th>
<th>MnuVelocity</th>
<th>模组编号</th>
<th>页次</th>
<th>5/9</th>
</tr>
</thead>
</table>

模组功能：速度场及变形量分析

呼叫方式：

<table>
<thead>
<tr>
<th>相关模组</th>
<th>呼叫模组名称：readctl,rdpnt,rdbsl,sorttime,mnuDeformation,interkd.exe</th>
<th>被呼叫模组名称：</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>输入参数</th>
<th>输出参数</th>
</tr>
</thead>
<tbody>
<tr>
<td>名 称</td>
<td>型 态</td>
</tr>
<tr>
<td>SetupFile</td>
<td>String</td>
</tr>
<tr>
<td>DataFile</td>
<td>String</td>
</tr>
</tbody>
</table>

参数意义说明：
SetupFile：规范参数、先验资料等
DataFile：各期平差成果档
VelAnalysisFile：速度量分析结果
DeformationFile：点位变形分析成果

流程说明：
一、读取SetupFile & DataFile
二、执行速度量及变形量分析
三、储存档案
基本控制测量網形平差及點位速度場建立軟體

<table>
<thead>
<tr>
<th>日期</th>
<th>91/12/23</th>
<th>模組規格</th>
<th>頁次</th>
<th>6/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>模組名稱</td>
<td>MnnGraphic</td>
<td>模組編號</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

模組功能：圓形參數設定及 DXF 檔案輸出

呼叫方式：

<table>
<thead>
<tr>
<th>呼叫模組名稱：</th>
<th>相關模組</th>
<th>被呼叫模組名稱：</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnuGraphicParameter,mnuDXFOut,gpsn</td>
<td>et_dxfout,outdxf_head,outdxf_end,outdxf_table,</td>
<td>outanno,opnt,ourbsl, outel1,oute1,oute2,outepl,oute2,readpt,read,bsl,readel1,readel2,readspl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>輸入參數</th>
<th>輸出參數</th>
</tr>
</thead>
<tbody>
<tr>
<td>名稱</td>
<td>型態</td>
</tr>
<tr>
<td>SetupFile</td>
<td>String</td>
</tr>
<tr>
<td>DataFile</td>
<td>String</td>
</tr>
</tbody>
</table>

參數意義說明：
SetupFile：參數設定（如比例尺、圖層、顏色等）
DataFile：成果檔
DXFFile：DXF 檔

流程說明：
一、讀取 SetupFile & DataFile
二、設定 DXF 檔案參數
三、執行轉檔
四、儲存檔案
<table>
<thead>
<tr>
<th>基本控制測量網形平差及點位速度場建立軟體</th>
</tr>
</thead>
<tbody>
<tr>
<td>日期</td>
</tr>
<tr>
<td>91/12/23</td>
</tr>
</tbody>
</table>

| 模組名稱 | 模組編號 |
|-----------------------------|

<table>
<thead>
<tr>
<th>呼叫方式：</th>
</tr>
</thead>
</table>

| 相關模組 | 呼叫模組名稱： |
|-----------------------------|

| mnuDisplay, mnuOutput, dischk, option1, option2, option3, option4, option5, option6, option7, option8, option9, option10, option11, option12, option13, option14, option15, option16 |

| 輸入參數 | 輸出參數 |
|-----------------------------|

| 名稱 | 型態 | 名稱 | 型態 |
|-----------------------------|

| DataFile | String |

<table>
<thead>
<tr>
<th>參數意義說明：</th>
</tr>
</thead>
</table>

SetupFile：參數設定
DataFile：成果檔
DXFFile：DXF 檔

<table>
<thead>
<tr>
<th>流程說明：</th>
</tr>
</thead>
</table>

一、讀取 DataFile
二、設定螢幕輸出或列印
基本控制测量网形平差及点位速度场建立软件

<table>
<thead>
<tr>
<th>日 期</th>
<th>91/12/23</th>
<th>模組規格</th>
<th>頁次</th>
<th>8/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>模組名稱</td>
<td>MnuTransform</td>
<td>模組編號</td>
<td></td>
<td></td>
</tr>
<tr>
<td>模組功能：平面坐标转换</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>呼叫方式：</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>呼叫模組名稱：</td>
<td>mnuPlane, affn6, interp</td>
<td>被呼叫模組名稱：</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>輸入參數</th>
<th>輸出參數</th>
</tr>
</thead>
<tbody>
<tr>
<td>名稱</td>
<td>型態</td>
</tr>
<tr>
<td>SetupFile</td>
<td>String</td>
</tr>
<tr>
<td>DataFile</td>
<td>String</td>
</tr>
</tbody>
</table>

參數意義說明：
SetupFile：参数设定
DataFile：待转换成果檔
TransFile：轉換後成果檔

流程說明：
1. 讀取 SetupFile & DataFile
2. 設定参数個數
3. 執行轉檔
4. 儲存檔案

基本控制测量数据差及点位速度变化量分析模式

<table>
<thead>
<tr>
<th>日 期</th>
<th>模組規格</th>
<th>頁次</th>
</tr>
</thead>
<tbody>
<tr>
<td>91/12/23</td>
<td>MnuStatistic</td>
<td>9/9</td>
</tr>
</tbody>
</table>

模組功能：成果統計分析

呼叫方式：

<table>
<thead>
<tr>
<th>呼叫模組名稱：</th>
<th>被呼叫模組名稱：</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnuStatistic, dischk, option1, option2, option3, option4, option5, option6, option7, option8, option9, option10, option11, option12, option13, option14, option15, option16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>輸入參數</th>
<th>輸出參數</th>
</tr>
</thead>
<tbody>
<tr>
<td>名 稱</td>
<td>型 態</td>
</tr>
<tr>
<td>SetupFile</td>
<td>String</td>
</tr>
<tr>
<td>DataFile</td>
<td>String</td>
</tr>
</tbody>
</table>

參數意義說明：
SetupFile：參數設定
DataFile：平差成果檔
StatisFile：統計成果檔

流程說明：
一、讀取SetupFile & DataFile
二、執行統計分析
三、儲存檔案
4-3 軟體功能測試

一、概要

依據「建立基本控制測量網形平差及點位速度場變化量分析模式」研究案軟體開發測試計畫書（以下簡稱測試計畫書）辦理。

二、測試資料

測試資料由詳細測量局提供，為詳細測量局辦理九二一地震災區監測計畫之第三、四及七次監測資料，其範圍含跨苗栗、台中、南投及彰化縣等區域。其中部分測試項目（如點數至少2,500點且基線至少7,500條以上）因尚未如此龐大之既有網形資料，僅能採用虛擬的觀測資料進行模擬測試。

三、測試項目

所有系統設計文件之功能模組均在軟體測試之列，各測試項目如下所述。

(一) 操作測試

所有「基本控制測量網形平差及點位速度場變化量分析模式」軟體系統功能，所述之操作程序均在測試之列。

(二) 功能測試

1. 工作計畫模組—新增、開啓、關閉、計畫屬性等。
 1-1 新增計畫功能—設定計畫名稱及工作目錄。
 1-2 開啓計畫功能—設定原有計畫工作目錄。
 1-3 關閉計畫功能—關閉工作目錄。
 1-4 計畫屬性功能—設定計畫執行日期、人員等資訊。
 1-5 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。
 1-6 列印及相關基礎功能。

2. 資料輸入及檢視模組—讀取 Gpsurvey、Sinex、TGO、TurboNet、角邊觀測資料及網形平差成果。
 2-1 讀取 Gpsurvey 資料功能—讀取由 Gpsurvey 軟體輸出之基線報表。
 2-2 讀取 Sinex 資料功能—讀取由 Sinex 格式報表。
 2-3 讀取 TGO 資料功能—讀取由 TGO 軟體輸出之基線報表。
 2-4 讀取 TurboNet 資料功能—讀取由 TurboNet 軟體輸出之基線或平差成果報表。
 2-5 讀取角邊觀測資料功能—讀取地面角邊觀測資料報表。
 2-6 讀取網形平差成果功能—讀取前次網形平差成果報表。
2-7 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

3. 基準及投影參數設定模組－基準參數設定及投影參數設定。
3-1 基準參數設定－設定橢球基準參數。
3-2 投影參數設定－設定地圖投影參數。
3-3 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

4. 網形平差計算模組－基本網形平差及速度場網形平差。
4-1 基本網形平差－設定網形平差間值，相關先驗值設定及網形平差。
4-2 速度場網形平差－設定網形平差間值，相關先驗值設定，約制條件及速度場網形平差。
4-3 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

5. 點位速度場及點位變形量分析模組－點位速度場分析及點位變形量分析。
5-1 點位速度場分析－各點位及單一點位速度場分析及內插。
5-2 點位變形量分析－各點位及單一點位變形量分析及內插。
5-3 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

6. 圖形設定及輸出（DXF 格式檔案）模組－圖形輸出參數及 DXF 圖形輸出。
6-1 圖形輸出參數－設定圖形輸出參數，如比例尺、圖幅、圖層及顏色等。
6-2 DXF 圖形輸出－輸出 DXF 檔案。
6-3 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

7. 成果顯示及輸出模組－成果顯示及成果輸出。
7-1 成果顯示－顯示各項成果檢核值，如基線重複性檢核、基線閉合差檢核、基線個別多餘數（Local Redundancy）檢核、內可靠度、外可靠度檢核、點位坐標改正數檢核、基線編號、名稱及對應二端點點號與測量值、觀測值改正數與標準化改正數檢核、網形平差統計測試檢核、各基線坐標分量 τ（Tau）測試值及變方因子之卡方（Chi-square）測試值、權單位中誤差或整體參考方差
因子(Reference variance factor)検核等。
7-2 成果輸出－輸出成果報表檔案。
7-3 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

8. 平面坐標轉換模組－平面坐標轉換。
 8-1 平面坐標轉換子功能－求解測量平面坐標轉換參數。
 8-2 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

9. 數量統計分析模組－基線統計分析、點位統計分析、成果統計分析。
 9-1 基線統計分析－統計基線個數及相關統計參數。
 9-2 點位統計分析－統計點位個數及相關統計參數。
 9-3 成果統計分析－統計平差成果及相關統計參數。
 9-4 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

（三）介面測試
 所有平差軟體的操作介面，均在測試之列，包括：
 1. 圖形使用者介面
 2. 中文提示者介面
 3. 錯誤訊息的處理
 4. 圖形顯示畫面的美觀
 5. 輸出資料的格式

（四）品質測試
 測試系統功能可靠性：
 1. 系統功能不可有資料儲存及運算可能發生的錯誤。
 2. 使用者操作程式不對時，須有錯誤訊息，引導繼續操作，避免當機。

四、測試結果
 本程式經本中心人員依「建立基本控制測量網形平差及點位速度場變化量分析模式」研究案軟體開發測試計畫書所訂定之內容及測試項目多次測試結果，並逐次將程式發生之錯誤進行修正後，均能符合測試要求，相關測試成果列於附錄 A。
第五章 進度說明

<table>
<thead>
<tr>
<th>工作項目</th>
<th>期程(日曆天)</th>
<th>91年</th>
<th>92年</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.蒐集速度場模型理論及相關作業方法</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>2.分析速度場模型理論及相關作業方法之功能性及適用性</td>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>3.網形平差模組系統設計及程式開發</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>4.點位速度場及变形量分析模組系統設計及程式開發</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>5.研擬軟體系統分析及測試報告書草案</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>6.期末報告</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>7.軟體安裝測試</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>8.資料測試及成果分析</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>9.研究報告書及操作手冊撰寫</td>
<td></td>
<td></td>
<td>80%</td>
</tr>
<tr>
<td>10.期末報告</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>11.教育訓練</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

预定進度 実際進度(完成百分比)
第六章 結論與建議

6-1 研究結果結論

一、網形平差軟體中文化並透過 GUI 介面在 Windows 作業平台上操作，可增加使用者操作上之便利，提昇操作人員學習意願。

二、速度場平差模式由第三章中可發現，結合歐拉向量法計算各點位速度向量並採用最小二乘共置法進行點位速度量內插為可行之方法，然而在速度場不連續面或邊界區域時，仍可能會有速度場內插不正確的現象，因此當成果中發現上述狀況時，應將作業區域細分為二個以上之處理單元後，分別進行速度場分析計算。

三、本軟體可結合各種基線計算軟體成果進行平差，如 Sinex、Gpsurvey、TDO 及地面觀測資料等，同時將開放本軟體平差基線格式供其他 GPS 基線計算軟體轉檔使用。

四、不同 GPS 基線計算軟體或不同時期計算所得之成果，仍應在進行網形平差或速度場平差計算前，進行預處理以確認其正確性及相互間比例之關係，惟各軟體之基線成果指標及品質不一，且受到外業觀測品質或基線計算人員素質等因素，應在經過初步平差計算後，依個別個案之特性進行相互間比例之調整。

五、速度場平差及內插執行過程中，為考量速度不連續面或邊界區域或內插點間隔，應盡可能縮短已知點間的間距（如加密已知點）以避免成果無法均勻表示速度場真實狀況或產生外插現象而影響成果品質。

六、本研究主要考量點位間之變形量及速度量之關係多與點位間之距離有關，然而，地形及地體構造亦為一重大影響因子，因此，未來或能考慮加入地形因素或地體構造模型，使成果更加接近真實狀況。
6-2 建議
一、為避免前節第四點所述情形發生，建議土地測量局應建立 GPS 外業及基線計算標準作業程序。
二、建議土地測量局研擬開發 GPS 基線計算程式，統一規範基線成果品質並訂定基線成果標準，供各 GPS 軟體開發廠商提供穩定可靠之基準成果。
第七章 相關參考資料

1. 曾清涼、余致義，2001，台南市政府設 GPS 控制點委託輔導測量作業、計算、平差等技術移轉研究報告，台南市政府研究報告，國立成功大學衛星資訊研究中心，2001。

2. 劉經南、施閔、姚宜斌、陶本藻等，2001，多面函數擬合法及其在建立中國地殼平面運動速度場模型中的應用研究，武漢大學學報信息科學版，Vol.16 No.6 Dec.2001。

3. 余水倍、黃金維，2001，台灣中部地區基本控制點變位監測，內政部土地測量局研究報告，地球物理學會，2001。

4. 曾清涼、余致義、何慶雄、劉鶴清、楊名，1998，GPS 衛星定位理論與實務，國立成功大學衛星資訊研究中心，1998。

5. 余致義、楊名，1987，八十六年度 GPS 衛星測量於台南縣、市、嘉義市及嘉義縣西半部三等控制點網系平差計算研究，內政部土地測量局未報告，1987。

6. 余致義、楊名，1986，GPS 衛星測量於桃園縣及新竹東半部三等衛星控制點網系平差計算研究，內政部土地測量局未報告，1986。

7. 曾清涼、莊王熊，1986，以大地控制網來偵測及監測點位的變動，第五屆測量學術及應用研討會論文集 P39-67，1986。

8. 余水倍、李瓊武，1986，台灣東部筏殼垂壓變形之研究，第五屆測量學術及應用研討會論文集 G1-17，1986。

9. 余致義、曾清涼，1985，GPS 衛星測量於新竹縣加密控制點測量點網系平差計算研究，內政部土地測量局總報告，1985。

10. 曾清涼，1994，幾何大地測量學 7. 變形 (微變) 分析，國立成功大學，1994。

11. 林宏麟，1986，利用重複測量進行變形之應變分析，國立成功大學航空測量研究所碩士論文，1986。

12. 張坤樹，1994，GPS 水準以垂線偏差法估算大地起伏差，國立成功大學航空測量研究所碩士論文，1994。

13. 內政部土地測量局，2001，「資訊作業規範」，2001。

14. 經濟部工業局「軟體工業五年發展推動計畫」-軟體工業生產力提升分項計畫，2001，「軟體技術文件指引手冊」，2001。

21. 陶本藻，1992，测量数据统计分析，测绘出版社。
附錄 A、系統功能選單模組測試報告書

一、概要

依據「建立基本控制測量網形平差及點位速度場變化量分析模式研究案軟體開發測試計畫書」辦理系統功能測試。其目的在於達成系統應用軟體的整合及測試之工作，內容包括「建立基本控制測量網形平差及點位速度場變化量分析模式」之軟體操作、功能、介面、績效及品質之測試。

測試資料由土地測量局提供，為土地測量局辦理九十二一一地震災區監測計畫之第三及第七次監測資料，其範圍含跨苗栗、台中、南投及彰化縣等區域。

二、測試項目

所有系統設計文件之功能模組均在軟體測試之列，各測試項目如下所述。

（一）、操作測試

所有「基本控制測量網形平差及點位速度場變化量分析模式」軟體系統功能，所述之操作程序均在測試之列，操作過程於期末簡報會場實際操作。

（二）、功能測試

本系統畫面如下圖，共分為九個功能模組，分述如下：

1. 工作計畫模組：進行專案管理、文書編輯器設定及成果列印等
2. 資料輸入及檢視模組：可分別讀取 GPSurvey、Sinex、TGO、TurboNet 基線資料、角邊網觀測資料及 Trimnet、TurboNet 網形平差結果。
3. 基準及投影參數設定模組：基準參數設定包含基準名稱、橢球長半徑及扁率等參數；地圖投影參數設定包括投影名稱、中央經緯、中央經緯尺度比及摺坐標西移量等參數。
4. 網形平差計算模組。
5. 點位速度場及點位變形量分析模組：以各期資料計算點位速度量及變形量。
6. 圖形設定及輸出（DXF 格式檔案）模組：圖名、比例尺、圖層設定及 DXF 檔輸出。
7. 成果顯示及輸出模組：顯示平差成果。
8. 平面坐標轉換模組。
9. 數量統計分析模組：分析平差成果。
1. 工作計畫模組－新增、開啓、關閉、計畫屬性、文書編輯器設定及成果列印等，表單畫面略同。

1-1 新增計畫功能－設定計畫名稱及工作目錄。

1-2 開啓計畫功能－設定原有計畫工作目錄。
1-3 關閉計畫功能—關閉工作目錄。

1-4 計畫屬性功能—設定計畫執行日期、人員等資訊。

1-5 各子系統於執行作業時如遇資料有誤導致程式錯誤或無法執行時，應顯示錯誤訊息及錯誤原因。

1-6 設定文書編輯工具提供檔案列印功能。
2. 資料輸入及檢視模組－讀取 Gpsurvey、Sinex、TGO、TurboNet 角邊觀測資料及網形平衡成果，格式詳如附錄 B。

讀取資料選單及轉換成果如下，讀取表單相同，僅略舉表示：

2-1 讀取 Gpsurvey 資料功能－讀取由 Gpsurvey 軟體輸出之基線報表。

2-2 讀取 Sinex 資料功能－讀取由 Sinex 格式報表。
2-3 讀取 TGQ 資料功能－讀取由 TGQ 軟體輸出之基線報表。

2-4 讀取 TurboNet 資料功能－讀取 TurboNet 軟體之基線輸入檔。

2-5 讀取角邊觀測資料功能－讀取地面角邊觀測資料報表。
2-6 讀取網形平差成果功能－讀取前次網形平差成果報表。

另出現要求輸入該次觀測之年月，以利進行速度量及變形量計算，如下圖。

![網路平差成果報表](image1)

![網路平差成果報表](image2)
3. 基準及投影參數設定模組－基準參數設定及投影參數設定。

3-1 基準參數設定－設定橢球基準參數。

![橢球基準參數設定](image1)

3-2 投影參數設定－設定地圖投影參數。

![地圖投影參數設定](image2)

3-3 錯誤訊息顯示－新建已存在之基準時，發生錯誤。

![錯誤訊息顯示](image3)
4. 網形平差計算模組－基本網形平差。

輸入項目由上而下分別爲：

（1）已知先驗點坐標及點位先驗精度輸入，可以有三種坐標系統供選擇，1. 卡式坐標（格式為 f15.0）、2. 球面坐標（格式為 f15.0，度.分分秒秒）及 3. 平面坐標（格式為 f15.0），點位先驗精度部分寫 10^{-4} 至 10^{-1}；另可選用已建立之檔案，並可選擇三種坐標方式輸入，格式為 A8, I2, 3F15.0, 3F8.0，其中 I1 為坐標代碼，分別為 1. 卡式坐標、2. 球面坐標及 3. 平面坐標。人工輸入及已建約制檔案訊息顯示如下：
(2) 檢測先驗資料輸入：如儀器光學對點誤差及儀器高先驗誤差，一般多取
為 0.0015 及 0.0040 公尺。

(3) 最大及最小漸進次數：分別為 10 和 3 次，可自行選定，惟當執行結果
已收斂時，程式將自動結束而不會執行至最大漸進次數。

(4) 相同點位判定值：為確保點位不因起始值過差而設，一般取約 10000 公
尺即可。
(5) 剔除基線：平差後剔除不那基線用，以代號表示，須與成果顯示式模組相互配合，剔除後基線自動移至參與平差基線之後。訊息顯示如下：

![剔除基線的圖示]

(6) 回復基線：平差後將原剔除之基線重新還原加入平差，以代號表示，須與成果顯示式模組相互配合，回復後基線自動還原至原始位置。訊息顯示如下：

![回復基線的圖示]

(7) 調權：分為單一基線及全組調權，以使平差結果符合統計測試值。訊息顯示如下：

![調權的圖示]

(8) 修改基準：同基準參數設定。

(9) 修改投影參數：同投影參數設定。

(10) 加入地面觀測資料及删除地面觀測資料功能。
(11) 開始平差功能執行後出現如下畫面以進行最小約制及強制附合平差，為
執行已知點檢核功能，另要求輸入已知點檔，其格式與前述(1)已建約
制檔格式相同。

平差過程中應隨時選用成果顯示模組，並進行必要之修正，如剔除基線、
回復基線及個別或整體調權等，以獲得合理之平差成果。
5. 點位速度場及點位變形量分析模組－點位速度場分析及點位變形量分析。

分別要求輸入各期平差成果，GPSurvey及Tnet成果輸入與資料輸入模組相同，「輸入平差成果」則可輸入其他專案資料。輸入完成後執行「變形量計算及內補」及「速度量計算及內補」即可。
6. 圖形設定及輸出（DXF 格式檔案）模組－圖形輸出參數及 DXF 圖形輸出。

可設定圖名、比例尺、及刪除基線之圖層。將平差成果、速度量及
變形量各別處理，並分別輸出等 DXF 檔案。轉為繪圖檔後顯示於圖一及
附錄 D。
7. 成果顯示及輸出模組－成果顯示及成果輸出。

7-1 成果顯示－顯示各项成果檢核值，由上而下分別有構單位中誤差、基線重覆率、卡方測試成果、測站重覆率、卡式（含基線個別多餘數（Local Redundancy））檢核、內可靠性、外可靠度檢核、點位坐標改正數檢核、球面及平面坐標成果、卡式（基線編號、名稱及對應二端點點號與觀測量值）、觀測量改正數與標準化改正數（同 τ（Tau）測試值）檢核、球面及平面基線分量成果、點位及相對誤差橢圓、已知點距離及方位角、基線閉合差檢核及、變形量及速度量成果等。相關格式於附錄 C。各項成果（變形量及速度量成果除外）均可選擇大於某規範值之基線或點位以不同顏色顯示，增加成果判斷之便利性，各項顯示成果列舉如下：

選用卡方測試時，要求輸入信心區間，以計算統計測試值，自由度在 500 以内採用查表內插方式計算，當自由度大於 500 時，則以卡方機率分佈公式探近似計算求得。
卡式坐標成果

![卡式坐標成果](image)

<table>
<thead>
<tr>
<th>座標</th>
<th>坐標</th>
<th>坐標</th>
<th>坐標</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.123</td>
<td>0.234</td>
<td>0.567</td>
<td>0.890</td>
</tr>
<tr>
<td>1.234</td>
<td>3.456</td>
<td>5.678</td>
<td>7.890</td>
</tr>
<tr>
<td>3.456</td>
<td>6.789</td>
<td>9.012</td>
<td>2.345</td>
</tr>
</tbody>
</table>

![卡式坐標成果](image)
<table>
<thead>
<tr>
<th>序号</th>
<th>项目</th>
<th>数量</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>项目1</td>
<td>100</td>
<td>个</td>
</tr>
<tr>
<td>2</td>
<td>项目2</td>
<td>50</td>
<td>个</td>
</tr>
<tr>
<td>3</td>
<td>项目3</td>
<td>20</td>
<td>个</td>
</tr>
<tr>
<td>4</td>
<td>项目4</td>
<td>10</td>
<td>个</td>
</tr>
<tr>
<td>5</td>
<td>项目5</td>
<td>5</td>
<td>个</td>
</tr>
</tbody>
</table>

注：以上数据为示例，实际数据以实际情况为准。
平面坐標成果另輸出土地測量局訂定之最小約制及強制套合成果
基線卡式坐標分量成果

基線優劣判斷閾值

<table>
<thead>
<tr>
<th>規定觀測分量</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>振幅</td>
<td>0.05 公尺</td>
</tr>
<tr>
<td>與化校正值 (T0)</td>
<td>5.0</td>
</tr>
</tbody>
</table>

構建要素

- **基線中間點**
- **基線長度率**
- **基線距離**
- **基線長度率**
- **位移相對周數**
- **解剖測量相**
- **相對測量相**
- **氣候相**
- **校正相**

<table>
<thead>
<tr>
<th>序號</th>
<th>標準值</th>
<th>修正值</th>
<th>坐標名稱</th>
<th>DX (公尺)</th>
<th>DY (公尺)</th>
<th>標準值 (公尺)</th>
<th>修正值 (公尺)</th>
<th>DX (公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>G13</td>
<td>-23279.996</td>
<td>-3002.392</td>
<td>23279.996</td>
<td>3002.392</td>
<td>-23279.996</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>M30</td>
<td>23174.316</td>
<td>-2889.106</td>
<td>23174.316</td>
<td>2889.106</td>
<td>23174.316</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>G15</td>
<td>10628.914</td>
<td>-5215.745</td>
<td>10628.914</td>
<td>5215.745</td>
<td>10628.914</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>M79</td>
<td>10928.655</td>
<td>-5215.745</td>
<td>10928.655</td>
<td>5215.745</td>
<td>10928.655</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>M30</td>
<td>1777.540</td>
<td>-2031.831</td>
<td>1777.540</td>
<td>2031.831</td>
<td>1777.540</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>M79</td>
<td>8045.803</td>
<td>-2031.831</td>
<td>8045.803</td>
<td>2031.831</td>
<td>8045.803</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>G15</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>M30</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>M79</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>M30</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>M79</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>G15</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>M30</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>M79</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>G15</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>M30</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>M79</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>G15</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>M30</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>M79</td>
<td>7713.820</td>
<td>-2031.831</td>
<td>7713.820</td>
<td>2031.831</td>
<td>7713.820</td>
</tr>
</tbody>
</table>

基準點坐標

- **精標點 A**
- **精標點 B**
- **精標點 C**
- **精標點 D**
- **精標點 E**
- **精標點 F**
- **精標點 G**
- **精標點 H**
- **精標點 I**
- **精標點 J**

成功大學都市環境研究中心

80
基線球面坐標分量成果

<table>
<thead>
<tr>
<th>區域</th>
<th>計算方法</th>
<th>坐標分量</th>
<th>計算結果</th>
<th>計算結果</th>
<th>計算結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>M103</td>
<td>0</td>
<td>02</td>
<td>17,43500</td>
</tr>
<tr>
<td>2</td>
<td>G103</td>
<td>M203</td>
<td>0</td>
<td>02</td>
<td>16,66900</td>
</tr>
<tr>
<td>3</td>
<td>G103</td>
<td>M304</td>
<td>0</td>
<td>02</td>
<td>16,50000</td>
</tr>
<tr>
<td>4</td>
<td>G103</td>
<td>M404</td>
<td>0</td>
<td>02</td>
<td>16,66900</td>
</tr>
<tr>
<td>5</td>
<td>G103</td>
<td>M504</td>
<td>0</td>
<td>02</td>
<td>17,43500</td>
</tr>
<tr>
<td>6</td>
<td>M103</td>
<td>M203</td>
<td>0</td>
<td>02</td>
<td>16,66900</td>
</tr>
<tr>
<td>7</td>
<td>M103</td>
<td>M304</td>
<td>0</td>
<td>02</td>
<td>16,50000</td>
</tr>
<tr>
<td>8</td>
<td>M103</td>
<td>M404</td>
<td>0</td>
<td>02</td>
<td>16,66900</td>
</tr>
<tr>
<td>9</td>
<td>M103</td>
<td>M504</td>
<td>0</td>
<td>02</td>
<td>17,43500</td>
</tr>
</tbody>
</table>
基線平面坐標分量成果

<table>
<thead>
<tr>
<th>代號</th>
<th>項目</th>
<th>計測點</th>
<th>ZM (公尺)</th>
<th>坐標分量 (公尺)</th>
<th>坐標分量 (公尺)</th>
<th>坐標分量 (公尺)</th>
<th>坐標分量 (公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M017</td>
<td>G102</td>
<td>425.830</td>
<td>0.000</td>
<td>0.000</td>
<td>7605.000</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>M017</td>
<td>G103</td>
<td>2050.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1790.000</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>M017</td>
<td>M904</td>
<td>428.050</td>
<td>0.000</td>
<td>0.000</td>
<td>1120.000</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>M017</td>
<td>M806</td>
<td>437.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1979.000</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>M017</td>
<td>M804</td>
<td>4871.000</td>
<td>0.000</td>
<td>0.000</td>
<td>9609.000</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>M017</td>
<td>M806</td>
<td>1955.000</td>
<td>0.000</td>
<td>0.000</td>
<td>4561.000</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>M017</td>
<td>M806</td>
<td>6156.000</td>
<td>0.000</td>
<td>0.000</td>
<td>4921.000</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>M017</td>
<td>M806</td>
<td>10613.000</td>
<td>0.000</td>
<td>0.330</td>
<td>9397.000</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>M017</td>
<td>M806</td>
<td>15992.000</td>
<td>-0.004</td>
<td>0.000</td>
<td>19700.000</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>M049</td>
<td>M805</td>
<td>4924.000</td>
<td>0.005</td>
<td>0.890</td>
<td>34198.000</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>M049</td>
<td>M806</td>
<td>4660.000</td>
<td>0.001</td>
<td>0.100</td>
<td>9866.000</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>M049</td>
<td>M806</td>
<td>9609.000</td>
<td>0.002</td>
<td>0.800</td>
<td>19011.000</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>M049</td>
<td>M806</td>
<td>1204.000</td>
<td>0.004</td>
<td>0.400</td>
<td>6106.000</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>M049</td>
<td>M806</td>
<td>12202.000</td>
<td>0.009</td>
<td>0.700</td>
<td>6454.000</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>M017</td>
<td>A001</td>
<td>15264.000</td>
<td>0.020</td>
<td>0.000</td>
<td>3519.000</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>M017</td>
<td>A001</td>
<td>15264.000</td>
<td>0.020</td>
<td>0.000</td>
<td>3519.000</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>M017</td>
<td>A001</td>
<td>15264.000</td>
<td>0.020</td>
<td>0.000</td>
<td>3519.000</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>M017</td>
<td>A001</td>
<td>15264.000</td>
<td>0.020</td>
<td>0.000</td>
<td>3519.000</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>M017</td>
<td>M806</td>
<td>1204.000</td>
<td>0.004</td>
<td>0.400</td>
<td>6106.000</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>M017</td>
<td>M806</td>
<td>1204.000</td>
<td>0.004</td>
<td>0.400</td>
<td>6106.000</td>
<td>0.0</td>
</tr>
<tr>
<td>21</td>
<td>M017</td>
<td>M806</td>
<td>1204.000</td>
<td>0.004</td>
<td>0.400</td>
<td>6106.000</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>M017</td>
<td>M806</td>
<td>1204.000</td>
<td>0.004</td>
<td>0.400</td>
<td>6106.000</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>M017</td>
<td>M803</td>
<td>7015.000</td>
<td>0.000</td>
<td>0.000</td>
<td>5722.000</td>
<td>0.0</td>
</tr>
<tr>
<td>24</td>
<td>M017</td>
<td>A001</td>
<td>2361.000</td>
<td>0.001</td>
<td>0.200</td>
<td>791.000</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>M017</td>
<td>A001</td>
<td>2361.000</td>
<td>0.001</td>
<td>0.200</td>
<td>791.000</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>M017</td>
<td>A001</td>
<td>2361.000</td>
<td>0.001</td>
<td>0.200</td>
<td>791.000</td>
<td>0.0</td>
</tr>
<tr>
<td>27</td>
<td>M017</td>
<td>A001</td>
<td>2361.000</td>
<td>0.001</td>
<td>0.200</td>
<td>791.000</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>M017</td>
<td>A001</td>
<td>2361.000</td>
<td>0.001</td>
<td>0.200</td>
<td>791.000</td>
<td>0.0</td>
</tr>
<tr>
<td>29</td>
<td>M017</td>
<td>A001</td>
<td>2361.000</td>
<td>0.001</td>
<td>0.200</td>
<td>791.000</td>
<td>0.0</td>
</tr>
</tbody>
</table>

成功大學衛生資訊研究中心
其他顯示項目列舉如下：

1. 土地測量局控制點平面程式
 - 絕對誤差等級等級標準設定為 0.05 公尺？
 - 是(Y) 否(N)

2. 相對誤差等級基準
 - 請輸入幕蘭值？

3. 土地測量局控制點平面程式
 - 相對誤差等級等級標準設定為 0.05 公尺？
 - 是(Y) 否(N)

4. 相對誤差等級基準
 - 請輸入幕蘭值？

5. 土地測量局控制點平面程式
 - 分離相對精度等級標準設定為 1/20000？
 - 是(Y) 否(N)
7-2 成果輸出—由計畫管理模組件統一輸出列印。
平面坐標轉換係採用 Affine 六參數轉換並配合最小二乘共置法以信號吸收部分誤差，說明如下：

6 參數 \(X = (a, b, c, d, e, f)^T \)，係由基本控制點的 \((x, y)\) 轉換到基本控制點的 \((N, E)\) 系。

\[
N = a + bx + cy + s_x
E = d + ex + fy + s_y
\]

其中 \(s_x \) 與 \(s_y \) 為網系變形量，可看作是要扭曲變形前的基本控制點去強制套合到變形後基本控制點的變形量。以最小二乘共置法預估 P 點訊號 \(S_p \) 的公式為：

\[
[S_p] = \begin{bmatrix} S_x \\ S_y \end{bmatrix} = C_p^T C^{-1} \left(\begin{bmatrix} N \\ E \end{bmatrix} - AX \right) \quad (3-7)
\]

其中，\(A \) 為觀測方程式的係數矩陣，其元素如下：

\[
A = \begin{bmatrix}
1 & x_p & 0 & 0 & 0 \\
0 & 0 & 1 & x_p & y_p \\
0 & 0 & 0 & 1 & y_p
\end{bmatrix}
\]

\(X \) 為未知參數，其解為：
\[X = (A^T C^{-1} A)^{-1} A^T C^{-1} [N \cr E] \quad (3-8) \]

C 為參與坐標轉換共同點的變形量協方差矩陣。若有 \(n \) 個共同點，其方陣大小為 \(2n \times 2n \)。\(C \) 為轉換點 \(P \) 與這 \(n \) 個共同點之間變形量的協變方矩陣，其階數為 \(2n \times 2n \)。

所需輸入檔案為控制點檔及輸入點檔，程式執行後輸出輸出點檔及參數檔，分別說明如下：

.CTL 控制點檔
. inp 輸入點檔
.out 輸出點檔
.par 參數檔

*附檔名亦可自行定義

(1) 控制點檔 (.CTL) 其檔案格式如下圖所示：格式為

(A8,1X,11,4(1X,14.4))，其參數項 11 為 1。

```
| 86711.082 | 570252.8572 | 3557226.382 | 168390.985 |
| 767273.5101 | 509405.6192 | 3557984.174 | 167893.229 |
| 767343.7076 | 509712.1192 | 3557812.242 | 168070.495 |
| 767457.9643 | 508585.1364 | 3558029.672 | 168465.284 |
| 767929.7315 | 502960.4861 | 3557644.582 | 167465.472 |
```
(2) 輸入點檔(.INP)其檔案格式如下圖所示: 格式為(A10,2f16.8)。

<table>
<thead>
<tr>
<th>城市</th>
<th>城市</th>
<th>格式</th>
<th>接觸</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1007</td>
<td>7617829.2151</td>
<td>584692.6573</td>
<td></td>
</tr>
<tr>
<td>A1007</td>
<td>7617279.5131</td>
<td>583490.6192</td>
<td></td>
</tr>
<tr>
<td>A1017</td>
<td>7617306.7076</td>
<td>585712.1198</td>
<td></td>
</tr>
<tr>
<td>A1027</td>
<td>7617487.9468</td>
<td>585266.1804</td>
<td></td>
</tr>
<tr>
<td>A1031</td>
<td>7617293.7945</td>
<td>582395.8661</td>
<td></td>
</tr>
<tr>
<td>A1048</td>
<td>7617130.0254</td>
<td>587476.3809</td>
<td></td>
</tr>
<tr>
<td>A1053</td>
<td>7617211.9264</td>
<td>585693.2592</td>
<td></td>
</tr>
<tr>
<td>A1017</td>
<td>76172815.0099</td>
<td>588195.8158</td>
<td></td>
</tr>
<tr>
<td>A1021</td>
<td>76174556.3146</td>
<td>587649.9753</td>
<td></td>
</tr>
<tr>
<td>A1061</td>
<td>76172912.1599</td>
<td>584080.1118</td>
<td></td>
</tr>
<tr>
<td>A1015</td>
<td>76172926.2997</td>
<td>599157.4237</td>
<td></td>
</tr>
<tr>
<td>X541</td>
<td>76172020.0029</td>
<td>580482.3667</td>
<td></td>
</tr>
<tr>
<td>X542</td>
<td>7617864.9478</td>
<td>592525.5520</td>
<td></td>
</tr>
<tr>
<td>X543</td>
<td>76171595.3083</td>
<td>588906.4829</td>
<td></td>
</tr>
<tr>
<td>X544</td>
<td>76171374.2842</td>
<td>580790.8250</td>
<td></td>
</tr>
<tr>
<td>X545</td>
<td>76171088.9936</td>
<td>598576.7386</td>
<td></td>
</tr>
<tr>
<td>T001</td>
<td>76171700.3863</td>
<td>598993.9971</td>
<td></td>
</tr>
<tr>
<td>T002</td>
<td>76171864.7078</td>
<td>599216.0458</td>
<td></td>
</tr>
<tr>
<td>A8007</td>
<td>76171207.6254</td>
<td>587476.3803</td>
<td></td>
</tr>
</tbody>
</table>

(3) 輸出點檔.OUT 其檔案格式如下圖所示: 格式為(A10,2f16.8)。

<table>
<thead>
<tr>
<th>簽署</th>
<th>記錄</th>
<th>說明</th>
</tr>
</thead>
<tbody>
<tr>
<td>R165</td>
<td>2562278.41538000</td>
<td>104405.98000000</td>
</tr>
<tr>
<td>G105</td>
<td>2562756.05450000</td>
<td>1065710.23830000</td>
</tr>
<tr>
<td>G104</td>
<td>2562647.51550000</td>
<td>1065730.25550000</td>
</tr>
<tr>
<td>G104</td>
<td>2562685.64530000</td>
<td>1066973.67510000</td>
</tr>
<tr>
<td>G109</td>
<td>2562928.39230000</td>
<td>1066147.56250000</td>
</tr>
<tr>
<td>G108</td>
<td>2569894.38938000</td>
<td>1066202.94590000</td>
</tr>
<tr>
<td>G108</td>
<td>2569419.02522000</td>
<td>1065959.26660000</td>
</tr>
<tr>
<td>G107</td>
<td>2569581.63073000</td>
<td>1065740.19270000</td>
</tr>
<tr>
<td>G107</td>
<td>2569580.42250000</td>
<td>1065934.74350000</td>
</tr>
<tr>
<td>G107</td>
<td>2569542.37550000</td>
<td>1066256.78540000</td>
</tr>
<tr>
<td>G1051</td>
<td>2569798.01270000</td>
<td>1066311.10530000</td>
</tr>
<tr>
<td>G1052</td>
<td>2569769.47030000</td>
<td>1066157.04970000</td>
</tr>
<tr>
<td>G1053</td>
<td>2569821.75210000</td>
<td>1066576.76550000</td>
</tr>
<tr>
<td>G1054</td>
<td>2569821.38420000</td>
<td>1066255.82160000</td>
</tr>
<tr>
<td>G1055</td>
<td>2570082.81230000</td>
<td>1066255.45360000</td>
</tr>
<tr>
<td>G1056</td>
<td>2570089.45950000</td>
<td>1066255.64050000</td>
</tr>
<tr>
<td>G1057</td>
<td>2570153.00430000</td>
<td>1065719.68320000</td>
</tr>
<tr>
<td>G1066</td>
<td>2570182.46440000</td>
<td>1065556.97270000</td>
</tr>
<tr>
<td>G1059</td>
<td>2570111.80260000</td>
<td>1065998.05230000</td>
</tr>
<tr>
<td>G1057</td>
<td>2570229.80520000</td>
<td>1065811.64890000</td>
</tr>
<tr>
<td>G1056</td>
<td>2570228.95290000</td>
<td>1065880.25510000</td>
</tr>
<tr>
<td>G1060</td>
<td>2570293.40770000</td>
<td>1066016.94670000</td>
</tr>
<tr>
<td>G1057</td>
<td>2570294.49140000</td>
<td>1066108.16160000</td>
</tr>
<tr>
<td>G1056</td>
<td>2570349.49120000</td>
<td>1066254.19840000</td>
</tr>
<tr>
<td>G1070</td>
<td>2570352.61920000</td>
<td>1065833.17770000</td>
</tr>
<tr>
<td>G1055</td>
<td>2570388.39370000</td>
<td>1066002.83610000</td>
</tr>
</tbody>
</table>
(4) 參數檔.PAR 其檔案格式如下圖所示:

<table>
<thead>
<tr>
<th>點名</th>
<th>縱座標改正數</th>
<th>橫座標改正數</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB087</td>
<td>-0.0009</td>
<td>0.0017</td>
</tr>
<tr>
<td>AB085</td>
<td>-0.0248</td>
<td>0.0093</td>
</tr>
<tr>
<td>AK127</td>
<td>-0.0595</td>
<td>-0.8194</td>
</tr>
<tr>
<td>AK217</td>
<td>-0.0325</td>
<td>0.0041</td>
</tr>
<tr>
<td>AK501</td>
<td>-0.0314</td>
<td>-0.0090</td>
</tr>
</tbody>
</table>

\[
[U] = 0.0048 \\
[S] = 0.0048 \text{ [M]} \\
\text{degree of freedom} = 4
\]

\[
XX(1) = 0.333348649519 \pm 0.776645E-08 \\
XX(2) = -0.88808346452 \pm 0.44396E-08 \\
XX(3) = 999888.20625683280 \pm 0.44396E-08 \\
XX(4) = -0.88808346452 \pm 0.44396E-08 \\
XX(5) = 0.333348649519 \pm 0.44396E-08 \\
XX(6) = 500.74414062500 \pm 0.44396E-08
\]
（三）、介面測試
所有平差軟體的操作介面，均採用圖形介面、中文提示、錯誤訊息即時顯示、圖形顯示畫面等，執行範例詳如上述各模組所顯示之畫面。

（四）、品質測試
本軟體平差成果與 TurboNet 平差成果比較，採用第三種監測網資料，同樣以最小約制方程（約制點位為 M808）進行平差，平差後之坐標分量差異最大為 5 公分以內。並分別以 TWD97 投影坐標、經緯度坐標及卡式坐標表示如表一、表二及表三。

選擇點 M808 為固定點，採用第四次與第七次監測網之資料進行速度量計算，與土地測量局之「台灣中部地區基本控制點變位監測」成果（轉換為相同固定點）比較結果發現速度量差異量頗大（詳如表四），應係由於測試資料僅採用兩次監測成果，而土地測量局成果系採用多次監測網資料並加入其它追蹤站或固定站資料（如中央研究院地殼變動點位觀測資料），而且所採用基線係利用商用軟體計算而得，各項指標較為不嚴謹，因此速度量之估算仍應以多次觀測計算結果較為可靠。

最小約制平差成果中之改正數平方和、自由度及權單位中誤差如下：

改正數平方和 \(\text{vtpv} = 99578.73933 \)
自由度 degree of freedom = 270
權單位中誤差 unit of rms = 19.2044

基線編號及對應二端點點號對照表詳如表五，基線多餘觀測分量表詳如表六，未知數方差矩陣檔案詳如表七， DXF 圖檔以 AutoCad 軟體繪出成果詳如圖一，平面坐標轉換成果參數資料詳如表八，強制附合平差固定點位分別為 M808、M714、M904、M906 及 M907，成果詳如表九，其改正數平方和 \(\text{vtpv} = 2626598.09415 \)，自由度 degree of freedom = 282 及權單位中誤差 unit of rms = 96.5100，平差成果報表詳如附錄。
表一 第三次監測網平差成果 TWD97 坐標比較表

<table>
<thead>
<tr>
<th>點名</th>
<th>N 坐標</th>
<th>E 坐標</th>
<th>高程</th>
<th>dN</th>
<th>dE</th>
<th>dh</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF01</td>
<td>2639492,158</td>
<td>205436,455</td>
<td>75.991</td>
<td>0.04</td>
<td>0.013</td>
<td>-0.001</td>
</tr>
<tr>
<td>AF04</td>
<td>2640864,276</td>
<td>202598,59</td>
<td>54.621</td>
<td>0.028</td>
<td>0.015</td>
<td>0</td>
</tr>
<tr>
<td>AF05</td>
<td>2643842,265</td>
<td>207829,062</td>
<td>57.699</td>
<td>0.025</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>AF09</td>
<td>2639240,897</td>
<td>200955,492</td>
<td>30.413</td>
<td>0.01</td>
<td>0.017</td>
<td>0</td>
</tr>
<tr>
<td>AF13</td>
<td>2640135,08</td>
<td>219226,485</td>
<td>119.893</td>
<td>0.02</td>
<td>-0.001</td>
<td>0</td>
</tr>
<tr>
<td>AF14</td>
<td>2656733,387</td>
<td>213706,066</td>
<td>75.819</td>
<td>0.013</td>
<td>0.004</td>
<td>0</td>
</tr>
<tr>
<td>AF15</td>
<td>2665508,267</td>
<td>214186,868</td>
<td>50.725</td>
<td>0.003</td>
<td>0.004</td>
<td>0</td>
</tr>
<tr>
<td>AF17</td>
<td>2672414,65</td>
<td>212588,54</td>
<td>87.724</td>
<td>-0.004</td>
<td>0.006</td>
<td>0</td>
</tr>
<tr>
<td>AF21</td>
<td>2679061,08</td>
<td>206538,089</td>
<td>66.369</td>
<td>-0.01</td>
<td>0.011</td>
<td>0</td>
</tr>
<tr>
<td>AF22</td>
<td>2650602,79</td>
<td>224120,621</td>
<td>426.987</td>
<td>0.019</td>
<td>-0.006</td>
<td>-0.001</td>
</tr>
<tr>
<td>AF24</td>
<td>2658929,15</td>
<td>222030,953</td>
<td>150.216</td>
<td>0.01</td>
<td>-0.004</td>
<td>0</td>
</tr>
<tr>
<td>AF27</td>
<td>2664332,066</td>
<td>224823,651</td>
<td>186.07</td>
<td>0.005</td>
<td>-0.006</td>
<td>0</td>
</tr>
<tr>
<td>AF28</td>
<td>2656399,131</td>
<td>209720,365</td>
<td>272.742</td>
<td>0.013</td>
<td>-0.009</td>
<td>-0.001</td>
</tr>
<tr>
<td>AF30</td>
<td>2642070,834</td>
<td>226290,257</td>
<td>210.76</td>
<td>0.027</td>
<td>-0.008</td>
<td>-0.001</td>
</tr>
<tr>
<td>GD40</td>
<td>2635431,811</td>
<td>214803,188</td>
<td>190.234</td>
<td>0.046</td>
<td>0.003</td>
<td>0</td>
</tr>
<tr>
<td>GD41</td>
<td>2628815,046</td>
<td>218040,386</td>
<td>172.137</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GD44</td>
<td>2636302,822</td>
<td>224585,865</td>
<td>233.721</td>
<td>0.032</td>
<td>-0.006</td>
<td>-0.001</td>
</tr>
<tr>
<td>GD45</td>
<td>2656974,364</td>
<td>215550,258</td>
<td>305.866</td>
<td>0.032</td>
<td>0.003</td>
<td>0</td>
</tr>
<tr>
<td>GD90</td>
<td>2689639,831</td>
<td>20538,026</td>
<td>32.276</td>
<td>-0.02</td>
<td>0.013</td>
<td>0</td>
</tr>
<tr>
<td>GD98</td>
<td>2687258,876</td>
<td>240765,337</td>
<td>570.071</td>
<td>-0.019</td>
<td>-0.023</td>
<td>0</td>
</tr>
<tr>
<td>GD99</td>
<td>2679605,322</td>
<td>239301,654</td>
<td>561.434</td>
<td>-0.005</td>
<td>-0.022</td>
<td>0</td>
</tr>
<tr>
<td>GI02</td>
<td>2688124,648</td>
<td>228438,347</td>
<td>434.176</td>
<td>-0.019</td>
<td>-0.011</td>
<td>0</td>
</tr>
<tr>
<td>GI03</td>
<td>2683908,339</td>
<td>221373,471</td>
<td>226.807</td>
<td>-0.015</td>
<td>0.003</td>
<td>0</td>
</tr>
<tr>
<td>NO45</td>
<td>2694531,302</td>
<td>215007,571</td>
<td>253.365</td>
<td>-0.025</td>
<td>0.003</td>
<td>0</td>
</tr>
<tr>
<td>MG49</td>
<td>262765,872</td>
<td>193640,007</td>
<td>36.165</td>
<td>0.017</td>
<td>0.024</td>
<td>0</td>
</tr>
<tr>
<td>N075</td>
<td>2685964,416</td>
<td>23468,38</td>
<td>459.46</td>
<td>-0.017</td>
<td>-0.016</td>
<td>-0.001</td>
</tr>
<tr>
<td>N081</td>
<td>262131,79</td>
<td>248167,794</td>
<td>578.575</td>
<td>0.017</td>
<td>-0.03</td>
<td>0</td>
</tr>
<tr>
<td>N093</td>
<td>2621209,315</td>
<td>196034,034</td>
<td>49.38</td>
<td>0.048</td>
<td>0.022</td>
<td>0</td>
</tr>
<tr>
<td>N099</td>
<td>2657614,324</td>
<td>189754,302</td>
<td>28</td>
<td>0.011</td>
<td>0.029</td>
<td>0</td>
</tr>
<tr>
<td>M000</td>
<td>2619419,768</td>
<td>225509,065</td>
<td>1543.263</td>
<td>0.049</td>
<td>-0.007</td>
<td>-0.002</td>
</tr>
<tr>
<td>M026</td>
<td>2650233,556</td>
<td>224350,197</td>
<td>721.788</td>
<td>0.009</td>
<td>-0.024</td>
<td>-0.001</td>
</tr>
<tr>
<td>M035</td>
<td>2661836,84</td>
<td>220864,528</td>
<td>271.605</td>
<td>0.007</td>
<td>-0.002</td>
<td>0</td>
</tr>
<tr>
<td>M043</td>
<td>2672010,409</td>
<td>197502,983</td>
<td>29.381</td>
<td>-0.003</td>
<td>0.021</td>
<td>0</td>
</tr>
<tr>
<td>M057</td>
<td>2624498,148</td>
<td>236019,771</td>
<td>851.819</td>
<td>0.044</td>
<td>-0.018</td>
<td>-0.001</td>
</tr>
<tr>
<td>M114</td>
<td>2690968,54</td>
<td>233158,086</td>
<td>544.1</td>
<td>-0.022</td>
<td>-0.015</td>
<td>0</td>
</tr>
<tr>
<td>M083</td>
<td>2667304,059</td>
<td>218044,602</td>
<td>95.017</td>
<td>0.002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M094</td>
<td>2688135,178</td>
<td>210085,618</td>
<td>213.032</td>
<td>-0.019</td>
<td>0.008</td>
<td>0</td>
</tr>
<tr>
<td>M096</td>
<td>263482,268</td>
<td>201496,532</td>
<td>23.408</td>
<td>-0.014</td>
<td>0.017</td>
<td>0</td>
</tr>
<tr>
<td>M097</td>
<td>262569,814</td>
<td>212651,274</td>
<td>58.115</td>
<td>0.007</td>
<td>0.006</td>
<td>0</td>
</tr>
<tr>
<td>M0910</td>
<td>2650314,322</td>
<td>190332,149</td>
<td>29.245</td>
<td>0.018</td>
<td>0.028</td>
<td>0</td>
</tr>
<tr>
<td>M0961</td>
<td>2652793,668</td>
<td>263422,944</td>
<td>1168.427</td>
<td>0.016</td>
<td>-0.045</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

單位：公尺
表二 第三次監測網平差成果經緯度坐標比較表

<table>
<thead>
<tr>
<th>點名</th>
<th>橫度</th>
<th>橫度</th>
<th>高程</th>
<th>$d\phi$ (秒)</th>
<th>$d\lambda$ (秒)</th>
<th>dh(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF01</td>
<td>23</td>
<td>46</td>
<td>120</td>
<td>33</td>
<td>45.98348</td>
<td>75.991</td>
</tr>
<tr>
<td>AF04</td>
<td>23</td>
<td>52</td>
<td>120</td>
<td>32</td>
<td>4.43278</td>
<td>54.621</td>
</tr>
<tr>
<td>AF05</td>
<td>23</td>
<td>53</td>
<td>120</td>
<td>35</td>
<td>9.00988</td>
<td>57.699</td>
</tr>
<tr>
<td>AF09</td>
<td>24</td>
<td>2</td>
<td>120</td>
<td>30</td>
<td>51.39243</td>
<td>30.413</td>
</tr>
<tr>
<td>AF13</td>
<td>23</td>
<td>56</td>
<td>120</td>
<td>41</td>
<td>51.57004</td>
<td>119.893</td>
</tr>
<tr>
<td>AF14</td>
<td>24</td>
<td>0</td>
<td>120</td>
<td>38</td>
<td>53.64608</td>
<td>75.819</td>
</tr>
<tr>
<td>AF15</td>
<td>24</td>
<td>5</td>
<td>120</td>
<td>38</td>
<td>51.87673</td>
<td>50.725</td>
</tr>
<tr>
<td>AF17</td>
<td>24</td>
<td>9</td>
<td>120</td>
<td>37</td>
<td>54.63943</td>
<td>87.724</td>
</tr>
<tr>
<td>AF21</td>
<td>24</td>
<td>12</td>
<td>120</td>
<td>34</td>
<td>21.1005</td>
<td>66.369</td>
</tr>
<tr>
<td>AF22</td>
<td>23</td>
<td>57</td>
<td>120</td>
<td>44</td>
<td>44.57596</td>
<td>426.987</td>
</tr>
<tr>
<td>AF24</td>
<td>24</td>
<td>2</td>
<td>120</td>
<td>43</td>
<td>30.08454</td>
<td>160.216</td>
</tr>
<tr>
<td>AF27</td>
<td>24</td>
<td>5</td>
<td>120</td>
<td>45</td>
<td>8.58949</td>
<td>186.07</td>
</tr>
<tr>
<td>AF28</td>
<td>24</td>
<td>0</td>
<td>120</td>
<td>36</td>
<td>14.63158</td>
<td>272.742</td>
</tr>
<tr>
<td>AF30</td>
<td>23</td>
<td>52</td>
<td>120</td>
<td>46</td>
<td>1.81867</td>
<td>210.76</td>
</tr>
<tr>
<td>GO40</td>
<td>23</td>
<td>42</td>
<td>120</td>
<td>39</td>
<td>17.33718</td>
<td>190.234</td>
</tr>
<tr>
<td>GO41</td>
<td>24</td>
<td>45</td>
<td>120</td>
<td>41</td>
<td>11.20995</td>
<td>172.137</td>
</tr>
<tr>
<td>GO44</td>
<td>24</td>
<td>49</td>
<td>120</td>
<td>45</td>
<td>1.91248</td>
<td>233.721</td>
</tr>
<tr>
<td>GO45</td>
<td>23</td>
<td>50</td>
<td>120</td>
<td>39</td>
<td>42.57251</td>
<td>305.866</td>
</tr>
<tr>
<td>GO90</td>
<td>24</td>
<td>18</td>
<td>120</td>
<td>33</td>
<td>42.95391</td>
<td>32.276</td>
</tr>
<tr>
<td>GO98</td>
<td>24</td>
<td>17</td>
<td>120</td>
<td>54</td>
<td>32.50239</td>
<td>570.071</td>
</tr>
<tr>
<td>GO99</td>
<td>24</td>
<td>10</td>
<td>120</td>
<td>53</td>
<td>40.94994</td>
<td>561.434</td>
</tr>
<tr>
<td>GL02</td>
<td>24</td>
<td>17</td>
<td>120</td>
<td>47</td>
<td>15.29326</td>
<td>434.176</td>
</tr>
<tr>
<td>GL03</td>
<td>24</td>
<td>15</td>
<td>120</td>
<td>43</td>
<td>5.10341</td>
<td>226.807</td>
</tr>
<tr>
<td>MD45</td>
<td>24</td>
<td>21</td>
<td>120</td>
<td>39</td>
<td>18.39866</td>
<td>255.365</td>
</tr>
<tr>
<td>MO49</td>
<td>23</td>
<td>58</td>
<td>120</td>
<td>26</td>
<td>46.12197</td>
<td>36.165</td>
</tr>
<tr>
<td>MO75</td>
<td>24</td>
<td>16</td>
<td>120</td>
<td>50</td>
<td>55.97499</td>
<td>549.46</td>
</tr>
<tr>
<td>MO81</td>
<td>23</td>
<td>58</td>
<td>120</td>
<td>58</td>
<td>55.18757</td>
<td>578.575</td>
</tr>
<tr>
<td>MO93</td>
<td>24</td>
<td>41</td>
<td>120</td>
<td>28</td>
<td>15.68665</td>
<td>49.38</td>
</tr>
<tr>
<td>MO96</td>
<td>24</td>
<td>1</td>
<td>120</td>
<td>24</td>
<td>27.96944</td>
<td>28</td>
</tr>
<tr>
<td>M00</td>
<td>24</td>
<td>40</td>
<td>120</td>
<td>45</td>
<td>41.96597</td>
<td>1543.263</td>
</tr>
<tr>
<td>M426</td>
<td>24</td>
<td>2</td>
<td>120</td>
<td>55</td>
<td>29.21643</td>
<td>721.728</td>
</tr>
<tr>
<td>M435</td>
<td>24</td>
<td>3</td>
<td>120</td>
<td>42</td>
<td>48.59162</td>
<td>271.605</td>
</tr>
<tr>
<td>M453</td>
<td>24</td>
<td>9</td>
<td>120</td>
<td>29</td>
<td>0.27692</td>
<td>29.381</td>
</tr>
<tr>
<td>M507</td>
<td>24</td>
<td>43</td>
<td>120</td>
<td>51</td>
<td>46.37321</td>
<td>851.819</td>
</tr>
<tr>
<td>N714</td>
<td>24</td>
<td>19</td>
<td>120</td>
<td>50</td>
<td>2.56286</td>
<td>544.1</td>
</tr>
<tr>
<td>M808</td>
<td>24</td>
<td>6</td>
<td>120</td>
<td>41</td>
<td>8.33272</td>
<td>95.017</td>
</tr>
<tr>
<td>M904</td>
<td>24</td>
<td>17</td>
<td>120</td>
<td>36</td>
<td>24.38128</td>
<td>213.032</td>
</tr>
<tr>
<td>M906</td>
<td>24</td>
<td>15</td>
<td>120</td>
<td>31</td>
<td>20.35654</td>
<td>23.408</td>
</tr>
<tr>
<td>M907</td>
<td>24</td>
<td>4</td>
<td>120</td>
<td>37</td>
<td>57.7752</td>
<td>58.115</td>
</tr>
<tr>
<td>M910</td>
<td>23</td>
<td>57</td>
<td>120</td>
<td>24</td>
<td>49.46321</td>
<td>29.245</td>
</tr>
<tr>
<td>M961</td>
<td>23</td>
<td>58</td>
<td>120</td>
<td>7</td>
<td>54.87985</td>
<td>1168.427</td>
</tr>
</tbody>
</table>
表三 第三次監測網平差成果卡式坐標比較表

<table>
<thead>
<tr>
<th>點名</th>
<th>X坐標</th>
<th>Y坐標</th>
<th>Z坐標</th>
<th>dx</th>
<th>dy</th>
<th>dz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF04</td>
<td>-2964911.937</td>
<td>5026485.167</td>
<td>2565291.807</td>
<td>-0.008</td>
<td>-0.017</td>
<td>0.024</td>
</tr>
<tr>
<td>AF05</td>
<td>-2968793.217</td>
<td>5022788.634</td>
<td>2566031.089</td>
<td>-0.004</td>
<td>-0.014</td>
<td>0.021</td>
</tr>
<tr>
<td>AF09</td>
<td>-2959333.328</td>
<td>5021089.859</td>
<td>2582070.838</td>
<td>-0.013</td>
<td>-0.013</td>
<td>0.008</td>
</tr>
<tr>
<td>AF13</td>
<td>-2977517.631</td>
<td>5015178.116</td>
<td>2572921.316</td>
<td>0.005</td>
<td>-0.006</td>
<td>0.017</td>
</tr>
<tr>
<td>AF14</td>
<td>-2971160.385</td>
<td>5015316.839</td>
<td>2579834.731</td>
<td>0.001</td>
<td>-0.006</td>
<td>0.011</td>
</tr>
<tr>
<td>AF15</td>
<td>-2969719.798</td>
<td>5011985.425</td>
<td>2587839.18</td>
<td>0.003</td>
<td>-0.003</td>
<td>0.001</td>
</tr>
<tr>
<td>AF17</td>
<td>-2966908.501</td>
<td>5010410.615</td>
<td>2591434.258</td>
<td>-0.006</td>
<td>-0.001</td>
<td>-0.005</td>
</tr>
<tr>
<td>AF21</td>
<td>-2960338.39</td>
<td>5011123.97</td>
<td>2600193.434</td>
<td>-0.012</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>AF22</td>
<td>-2981559.899</td>
<td>5012404.582</td>
<td>2574396.298</td>
<td>0.009</td>
<td>-0.003</td>
<td>0.015</td>
</tr>
<tr>
<td>AF24</td>
<td>-2977895.443</td>
<td>5010361.546</td>
<td>2581891.907</td>
<td>0.005</td>
<td>-0.001</td>
<td>0.008</td>
</tr>
<tr>
<td>AF27</td>
<td>-2979172.441</td>
<td>5007654.129</td>
<td>2586841.291</td>
<td>0.007</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>AF28</td>
<td>-2967894.106</td>
<td>5017622.491</td>
<td>2579599.778</td>
<td>-0.005</td>
<td>-0.009</td>
<td>0.01</td>
</tr>
<tr>
<td>AF30</td>
<td>-2985304.854</td>
<td>5014089.606</td>
<td>2566511.856</td>
<td>0.013</td>
<td>-0.005</td>
<td>0.023</td>
</tr>
<tr>
<td>AF31</td>
<td>-2979097.105</td>
<td>5026396.636</td>
<td>2549426.025</td>
<td>0.007</td>
<td>-0.017</td>
<td>0.04</td>
</tr>
<tr>
<td>AF41</td>
<td>-2980755.5</td>
<td>5022870.495</td>
<td>2554533.915</td>
<td>0.008</td>
<td>-0.013</td>
<td>0.035</td>
</tr>
<tr>
<td>AF44</td>
<td>-2984811.44</td>
<td>5016911.106</td>
<td>2561425.607</td>
<td>0.012</td>
<td>-0.008</td>
<td>0.028</td>
</tr>
<tr>
<td>G045</td>
<td>-2976981.057</td>
<td>5021425.494</td>
<td>2561859.013</td>
<td>0.004</td>
<td>-0.012</td>
<td>0.028</td>
</tr>
<tr>
<td>G090</td>
<td>-2957175.721</td>
<td>5007902.096</td>
<td>2609821.46</td>
<td>-0.015</td>
<td>0.001</td>
<td>-0.002</td>
</tr>
<tr>
<td>G098</td>
<td>-2988200.07</td>
<td>4991133.506</td>
<td>2609793.516</td>
<td>0.015</td>
<td>0.019</td>
<td>-0.018</td>
</tr>
<tr>
<td>G099</td>
<td>-2989750.623</td>
<td>4996556.455</td>
<td>2595804.395</td>
<td>0.017</td>
<td>0.013</td>
<td>-0.006</td>
</tr>
<tr>
<td>G102</td>
<td>-2977370.983</td>
<td>4997048.507</td>
<td>260854.802</td>
<td>0.009</td>
<td>-0.013</td>
<td>-0.019</td>
</tr>
<tr>
<td>G103</td>
<td>-2972099.404</td>
<td>501988.834</td>
<td>2604715.99</td>
<td>-0.001</td>
<td>-0.007</td>
<td>0.016</td>
</tr>
<tr>
<td>M045</td>
<td>-2964386.33</td>
<td>5001517.618</td>
<td>2614395.024</td>
<td>-0.008</td>
<td>0.008</td>
<td>-0.025</td>
</tr>
<tr>
<td>M049</td>
<td>-2954703.628</td>
<td>5026890.124</td>
<td>2576134.483</td>
<td>0.018</td>
<td>-0.017</td>
<td>0.018</td>
</tr>
<tr>
<td>M075</td>
<td>-2983223.491</td>
<td>4994710.524</td>
<td>2606740.071</td>
<td>0.011</td>
<td>0.014</td>
<td>-0.017</td>
</tr>
<tr>
<td>M081</td>
<td>-3001951.607</td>
<td>4999644.563</td>
<td>2575876.502</td>
<td>0.029</td>
<td>0.01</td>
<td>0.013</td>
</tr>
<tr>
<td>M093</td>
<td>-2963357.713</td>
<td>5036609.93</td>
<td>2547281.574</td>
<td>-0.009</td>
<td>-0.027</td>
<td>0.042</td>
</tr>
<tr>
<td>M300</td>
<td>-2950378.51</td>
<td>5027236.436</td>
<td>2580363.541</td>
<td>-0.023</td>
<td>-0.017</td>
<td>0.008</td>
</tr>
<tr>
<td>M400</td>
<td>-2989762.722</td>
<td>5023368.494</td>
<td>2546315.322</td>
<td>0.017</td>
<td>-0.013</td>
<td>0.014</td>
</tr>
<tr>
<td>M426</td>
<td>-2995330.782</td>
<td>4999923.96</td>
<td>2583335.217</td>
<td>0.023</td>
<td>0.009</td>
<td>0.006</td>
</tr>
<tr>
<td>M436</td>
<td>-2976334.666</td>
<td>5010029.939</td>
<td>2584590.807</td>
<td>0.004</td>
<td>-0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>M453</td>
<td>-2953985.085</td>
<td>5018193.545</td>
<td>2593718.015</td>
<td>-0.019</td>
<td>-0.009</td>
<td>-0.004</td>
</tr>
<tr>
<td>M507</td>
<td>-2997413.648</td>
<td>5015684.397</td>
<td>2550701.474</td>
<td>0.025</td>
<td>-0.007</td>
<td>0.039</td>
</tr>
<tr>
<td>M714</td>
<td>-2980872.117</td>
<td>4993710.614</td>
<td>2611297.846</td>
<td>0.008</td>
<td>0.015</td>
<td>0.022</td>
</tr>
<tr>
<td>M808</td>
<td>-2972679.117</td>
<td>5009420.201</td>
<td>2589505.839</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M904</td>
<td>-2961490.485</td>
<td>5006256.266</td>
<td>2608536.814</td>
<td>-0.011</td>
<td>0.003</td>
<td>-0.019</td>
</tr>
<tr>
<td>M906</td>
<td>-2954997.777</td>
<td>5012124.644</td>
<td>2604192.583</td>
<td>-0.018</td>
<td>-0.002</td>
<td>-0.014</td>
</tr>
<tr>
<td>M907</td>
<td>-2969020.315</td>
<td>5013803.119</td>
<td>2585155.647</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.003</td>
</tr>
<tr>
<td>M910</td>
<td>-2952363.782</td>
<td>5029418.538</td>
<td>2573879.163</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.015</td>
</tr>
<tr>
<td>M961</td>
<td>-3015163.861</td>
<td>4992005.968</td>
<td>2576715.475</td>
<td>0.043</td>
<td>0.017</td>
<td>0.013</td>
</tr>
</tbody>
</table>

單位：公尺
表四 第三次與第七次監測網速度量成果比較表

<table>
<thead>
<tr>
<th>點名</th>
<th>Vn</th>
<th>Ve</th>
<th>Vn</th>
<th>Ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF01</td>
<td>-20.0</td>
<td>30.7</td>
<td>-13.4</td>
<td>15.3</td>
</tr>
<tr>
<td>AF05</td>
<td>-16.0</td>
<td>42.7</td>
<td>-3.2</td>
<td>12.2</td>
</tr>
<tr>
<td>AF09</td>
<td>2.7</td>
<td>28.0</td>
<td>-6.6</td>
<td>10.0</td>
</tr>
<tr>
<td>AF13</td>
<td>-13.3</td>
<td>42.7</td>
<td>-11.6</td>
<td>1.6</td>
</tr>
<tr>
<td>AF14</td>
<td>-16.0</td>
<td>13.3</td>
<td>-14.2</td>
<td>-3.4</td>
</tr>
<tr>
<td>AF15</td>
<td>4.0</td>
<td>37.3</td>
<td>-12.5</td>
<td>-12.3</td>
</tr>
<tr>
<td>AF17</td>
<td>1.3</td>
<td>37.3</td>
<td>-4.8</td>
<td>15.4</td>
</tr>
<tr>
<td>AF21</td>
<td>-6.7</td>
<td>54.7</td>
<td>-20.8</td>
<td>24.6</td>
</tr>
<tr>
<td>AF22</td>
<td>20.0</td>
<td>-33.3</td>
<td>15.9</td>
<td>-80.4</td>
</tr>
<tr>
<td>AF24</td>
<td>30.7</td>
<td>0.0</td>
<td>23.7</td>
<td>-28.7</td>
</tr>
<tr>
<td>AF27</td>
<td>10.7</td>
<td>13.3</td>
<td>0.7</td>
<td>-22.5</td>
</tr>
<tr>
<td>AF30</td>
<td>10.7</td>
<td>-33.3</td>
<td>41.9</td>
<td>-129.1</td>
</tr>
<tr>
<td>G040</td>
<td>-30.7</td>
<td>20.0</td>
<td>-7.7</td>
<td>0.6</td>
</tr>
<tr>
<td>G041</td>
<td>-33.3</td>
<td>21.3</td>
<td>-7.3</td>
<td>-18.7</td>
</tr>
<tr>
<td>G044</td>
<td>33.3</td>
<td>-34.7</td>
<td>59.8</td>
<td>-104.8</td>
</tr>
<tr>
<td>G045</td>
<td>-13.3</td>
<td>22.7</td>
<td>-2.7</td>
<td>-18.1</td>
</tr>
<tr>
<td>G090</td>
<td>-2.7</td>
<td>25.3</td>
<td>-9.7</td>
<td>17.3</td>
</tr>
<tr>
<td>G098</td>
<td>10.7</td>
<td>21.3</td>
<td>-8</td>
<td>-19.0</td>
</tr>
<tr>
<td>G099</td>
<td>26.7</td>
<td>-25.3</td>
<td>13.9</td>
<td>-66.1</td>
</tr>
<tr>
<td>G102</td>
<td>1.3</td>
<td>52.0</td>
<td>9.8</td>
<td>14.6</td>
</tr>
<tr>
<td>G103</td>
<td>12.0</td>
<td>30.7</td>
<td>-5.4</td>
<td>0.0</td>
</tr>
<tr>
<td>M045</td>
<td>-16.0</td>
<td>38.7</td>
<td>-32.2</td>
<td>14.4</td>
</tr>
<tr>
<td>M049</td>
<td>-6.7</td>
<td>22.7</td>
<td>-2.4</td>
<td>17.2</td>
</tr>
<tr>
<td>M081</td>
<td>16.0</td>
<td>-46.7</td>
<td>28.3</td>
<td>-112.7</td>
</tr>
<tr>
<td>M093</td>
<td>-17.3</td>
<td>34.7</td>
<td>-23.7</td>
<td>9.8</td>
</tr>
<tr>
<td>M300</td>
<td>-32.0</td>
<td>32.0</td>
<td>-0.2</td>
<td>4.2</td>
</tr>
<tr>
<td>M426</td>
<td>60.0</td>
<td>-49.3</td>
<td>44</td>
<td>-78.8</td>
</tr>
<tr>
<td>M436</td>
<td>14.7</td>
<td>5.3</td>
<td>19.5</td>
<td>-14.6</td>
</tr>
<tr>
<td>M453</td>
<td>-10.7</td>
<td>26.7</td>
<td>-20.8</td>
<td>13.8</td>
</tr>
<tr>
<td>M507</td>
<td>-4.0</td>
<td>-32.0</td>
<td>29.8</td>
<td>-79.3</td>
</tr>
<tr>
<td>M714</td>
<td>-21.3</td>
<td>24.0</td>
<td>-14.7</td>
<td>14.0</td>
</tr>
<tr>
<td>M808</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>M904</td>
<td>-21.3</td>
<td>29.3</td>
<td>-35.4</td>
<td>17.5</td>
</tr>
<tr>
<td>M906</td>
<td>2.7</td>
<td>38.7</td>
<td>-19.7</td>
<td>13.1</td>
</tr>
<tr>
<td>M907</td>
<td>8.0</td>
<td>34.7</td>
<td>-4.4</td>
<td>2.5</td>
</tr>
<tr>
<td>M910</td>
<td>-2.7</td>
<td>49.3</td>
<td>-8.1</td>
<td>13.8</td>
</tr>
</tbody>
</table>
表五 基線編號及對應二端點點號對照表（節錄）

<table>
<thead>
<tr>
<th>基線</th>
<th>基線來源</th>
<th>起點</th>
<th>終點</th>
<th>權重</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E:\YU\0881\00000207.SSF</td>
<td>G103</td>
<td>G102</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>E:\YU\0881\00000258.SSF</td>
<td>G103</td>
<td>M075</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>E:\YU\0881\00000234.SSF</td>
<td>G103</td>
<td>M904</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>E:\YU\0881\00000276.SSF</td>
<td>G103</td>
<td>M906</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>E:\YU\0881\00000226.SSF</td>
<td>G090</td>
<td>M045</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>E:\YU\0881\00000195.SSF</td>
<td>G090</td>
<td>M904</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>E:\YU\0881\00000291.SSF</td>
<td>G090</td>
<td>M906</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>E:\YU\0871\00000203.SSF</td>
<td>M045</td>
<td>G103</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>E:\YU\0871\00000242.SSF</td>
<td>M045</td>
<td>M714</td>
<td>1.00</td>
</tr>
</tbody>
</table>

表六 基線多餘觀測分量表（節錄）

<table>
<thead>
<tr>
<th>基線編號</th>
<th>DX</th>
<th>DY</th>
<th>DZ</th>
<th>基線</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.557</td>
<td>0.553</td>
<td>0.557</td>
<td>0.56</td>
</tr>
<tr>
<td>2</td>
<td>0.651</td>
<td>0.650</td>
<td>0.651</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>0.620</td>
<td>0.618</td>
<td>0.617</td>
<td>0.62</td>
</tr>
<tr>
<td>4</td>
<td>0.489</td>
<td>0.491</td>
<td>0.488</td>
<td>0.49</td>
</tr>
<tr>
<td>5</td>
<td>0.403</td>
<td>0.394</td>
<td>0.397</td>
<td>0.40</td>
</tr>
<tr>
<td>6</td>
<td>0.530</td>
<td>0.528</td>
<td>0.525</td>
<td>0.53</td>
</tr>
<tr>
<td>7</td>
<td>0.615</td>
<td>0.624</td>
<td>0.638</td>
<td>0.63</td>
</tr>
<tr>
<td>8</td>
<td>0.546</td>
<td>0.542</td>
<td>0.543</td>
<td>0.54</td>
</tr>
<tr>
<td>9</td>
<td>0.699</td>
<td>0.700</td>
<td>0.700</td>
<td>0.70</td>
</tr>
</tbody>
</table>
表七 未知數協方差矩陣檔案（節錄）

<table>
<thead>
<tr>
<th>G103</th>
<th>G102</th>
<th>M075</th>
<th>M094</th>
<th>M096</th>
<th>GO90</th>
<th>M045</th>
<th>M714</th>
<th>M049</th>
<th>AP05</th>
</tr>
</thead>
<tbody>
<tr>
<td>M300</td>
<td>M907</td>
<td>G098</td>
<td>G099</td>
<td>M081</td>
<td>M426</td>
<td>M093</td>
<td>AP04</td>
<td>G040</td>
<td>M400</td>
</tr>
<tr>
<td>M910</td>
<td>AF30</td>
<td>M507</td>
<td>AF22</td>
<td>M436</td>
<td>AF27</td>
<td>M808</td>
<td>M453</td>
<td>M961</td>
<td></td>
</tr>
<tr>
<td>AF01</td>
<td>G045</td>
<td>G041</td>
<td>AF09</td>
<td>AF28</td>
<td>AP13</td>
<td>AF14</td>
<td>AF15</td>
<td>AF17</td>
<td>AF21</td>
</tr>
<tr>
<td>G044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.50176516D-03 -0.70535489D-03 0.12955530D-02 -0.32353081D-03 0.60182040D-03
0.35586452D-03 -0.49531842D-03 -0.69614768D-03 -0.31936853D-03 0.76261986D-03
-0.69588396D-03 0.12790102D-02 0.59424067D-03 -0.11385751D-02 0.20843919D-02
-0.31912420D-03 0.59403715D-03 0.35146330D-03 -0.55294958D-03 0.10168971D-02
0.59524102D-03 0.45807040D-03 -0.64297493D-03 -0.29533826D-03 0.57816468D-03
-0.84225940D-03 -0.40092228D-03 0.24342678D-02 -0.64148188D-03 0.11815628D-02
0.55021441D-03 -0.84092414D-03 0.15437061D-02 0.74108267D-03 -0.37775672D-02
0.68537984D-02 -0.29366638D-03 0.54866070D-03 0.32603908D-03 -0.39950004D-03
0.73982008D-03 0.43633290D-03 -0.19713726D-02 0.35319440D-02 0.20622284D-02

表八 平面坐標轉換成果參數資料

<table>
<thead>
<tr>
<th>點名</th>
<th>縱坐標改正數</th>
<th>橫坐標改正數</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB007</td>
<td>0.0055</td>
<td>-0.0004</td>
</tr>
<tr>
<td>AB043</td>
<td>0.0120</td>
<td>0.0071</td>
</tr>
<tr>
<td>AX127</td>
<td>0.0125</td>
<td>-0.0125</td>
</tr>
<tr>
<td>AX217</td>
<td>0.0062</td>
<td>0.0019</td>
</tr>
<tr>
<td>AX501</td>
<td>0.0074</td>
<td>-0.0111</td>
</tr>
</tbody>
</table>

\[[VW] = 0.0008 \quad \text{degree of freedom} = 4 \]
\[SDD = 0.0138 \quad [\text{M}] \]

XX(1)=	0.99998767674	+0.276840E+07
XX(2)=	-0.00000995025	+0.173908E+07
XX(3)=	-174.0312500000	+0.175403E+06
XX(4)=	0.00002876483	+0.276840E+07
XX(5)=	1.00001953694	+0.173908E+07
XX(6)=	751.11132812500	+0.175403E+06
表九 第三次監測網強制附合平差成果

<table>
<thead>
<tr>
<th>點名</th>
<th>X坐標</th>
<th>Y坐標</th>
<th>Z坐標</th>
<th>sX</th>
<th>sY</th>
<th>sZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>G013</td>
<td>-2972099.805</td>
<td>5001988.569</td>
<td>2604713.779</td>
<td>0.059</td>
<td>0.102</td>
<td>0.055</td>
</tr>
<tr>
<td>G012</td>
<td>-2977371.361</td>
<td>4997048.154</td>
<td>2608654.391</td>
<td>0.075</td>
<td>0.13</td>
<td>0.071</td>
</tr>
<tr>
<td>M075</td>
<td>-2983223.85</td>
<td>4994710.223</td>
<td>2606739.933</td>
<td>0.225</td>
<td>0.381</td>
<td>0.21</td>
</tr>
<tr>
<td>M004</td>
<td>-2961490.843</td>
<td>5006255.81</td>
<td>2608536.486</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M906</td>
<td>-2954998.273</td>
<td>5012124.274</td>
<td>2604192.226</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G050</td>
<td>-2957176.126</td>
<td>5007901.719</td>
<td>2609821.18</td>
<td>0.086</td>
<td>0.151</td>
<td>0.083</td>
</tr>
<tr>
<td>M043</td>
<td>-2964366.718</td>
<td>5001517.268</td>
<td>2614394.791</td>
<td>0.072</td>
<td>0.127</td>
<td>0.07</td>
</tr>
<tr>
<td>M714</td>
<td>-2980872.435</td>
<td>4930710.223</td>
<td>2611298.097</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M049</td>
<td>-2958703.85</td>
<td>5026889.971</td>
<td>2576134.255</td>
<td>0.142</td>
<td>0.251</td>
<td>0.141</td>
</tr>
<tr>
<td>AF05</td>
<td>-2968793.44</td>
<td>5022788.471</td>
<td>2568030.864</td>
<td>0.107</td>
<td>0.183</td>
<td>0.101</td>
</tr>
<tr>
<td>M300</td>
<td>-2950378.732</td>
<td>5027236.278</td>
<td>2580363.315</td>
<td>0.137</td>
<td>0.242</td>
<td>0.133</td>
</tr>
<tr>
<td>M907</td>
<td>-2969020.538</td>
<td>5018380.99</td>
<td>2585135.409</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G098</td>
<td>-2988200.4</td>
<td>4991133.232</td>
<td>2607933.57</td>
<td>0.202</td>
<td>0.35</td>
<td>0.192</td>
</tr>
<tr>
<td>G099</td>
<td>-2989750.916</td>
<td>4996556.221</td>
<td>2599504.269</td>
<td>0.169</td>
<td>0.29</td>
<td>0.16</td>
</tr>
<tr>
<td>M081</td>
<td>-3001951.831</td>
<td>4999644.38</td>
<td>2578587.283</td>
<td>0.186</td>
<td>0.319</td>
<td>0.174</td>
</tr>
<tr>
<td>M426</td>
<td>-2999331.003</td>
<td>4999923.766</td>
<td>2583833.004</td>
<td>0.232</td>
<td>0.395</td>
<td>0.223</td>
</tr>
<tr>
<td>M993</td>
<td>-2963557.936</td>
<td>5036605.763</td>
<td>2547281.349</td>
<td>0.145</td>
<td>0.233</td>
<td>0.138</td>
</tr>
<tr>
<td>AF04</td>
<td>-2964912.16</td>
<td>5026485.001</td>
<td>2565291.882</td>
<td>0.139</td>
<td>0.241</td>
<td>0.132</td>
</tr>
<tr>
<td>G040</td>
<td>-2979097.327</td>
<td>5026396.468</td>
<td>2549425.801</td>
<td>0.157</td>
<td>0.272</td>
<td>0.147</td>
</tr>
<tr>
<td>M400</td>
<td>-2986762.945</td>
<td>5023686.325</td>
<td>2566313.097</td>
<td>0.149</td>
<td>0.258</td>
<td>0.141</td>
</tr>
<tr>
<td>M910</td>
<td>-2953264.005</td>
<td>5029418.375</td>
<td>2573878.938</td>
<td>0.125</td>
<td>0.217</td>
<td>0.119</td>
</tr>
<tr>
<td>AF30</td>
<td>-2985105.077</td>
<td>5014089.439</td>
<td>2566511.631</td>
<td>0.115</td>
<td>0.198</td>
<td>0.11</td>
</tr>
<tr>
<td>M507</td>
<td>-2997431.871</td>
<td>5015684.222</td>
<td>2550701.252</td>
<td>0.165</td>
<td>0.285</td>
<td>0.156</td>
</tr>
<tr>
<td>AF22</td>
<td>-2981560.121</td>
<td>5012404.415</td>
<td>2574396.074</td>
<td>0.123</td>
<td>0.21</td>
<td>0.116</td>
</tr>
<tr>
<td>AF24</td>
<td>-2977895.665</td>
<td>5010361.376</td>
<td>2581891.683</td>
<td>0.124</td>
<td>0.212</td>
<td>0.118</td>
</tr>
<tr>
<td>M436</td>
<td>-2976334.777</td>
<td>5010029.87</td>
<td>2584590.704</td>
<td>0.109</td>
<td>0.19</td>
<td>0.105</td>
</tr>
<tr>
<td>M27</td>
<td>-2979172.685</td>
<td>5007063.912</td>
<td>2586841.119</td>
<td>0.128</td>
<td>0.22</td>
<td>0.121</td>
</tr>
<tr>
<td>M080</td>
<td>-2972679.117</td>
<td>5009420.201</td>
<td>2589505.839</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M453</td>
<td>-2953965.322</td>
<td>5018193.441</td>
<td>2593717.858</td>
<td>0.151</td>
<td>0.259</td>
<td>0.141</td>
</tr>
<tr>
<td>M961</td>
<td>-3015164.095</td>
<td>4992005.763</td>
<td>2576715.27</td>
<td>0.23</td>
<td>0.4</td>
<td>0.221</td>
</tr>
<tr>
<td>AF01</td>
<td>-2969230.138</td>
<td>5028939.431</td>
<td>2554904.236</td>
<td>0.133</td>
<td>0.23</td>
<td>0.127</td>
</tr>
<tr>
<td>G045</td>
<td>-2976981.28</td>
<td>5021425.328</td>
<td>2561868.788</td>
<td>0.138</td>
<td>0.238</td>
<td>0.13</td>
</tr>
<tr>
<td>G041</td>
<td>-2980755.723</td>
<td>5022870.328</td>
<td>255433.691</td>
<td>0.146</td>
<td>0.252</td>
<td>0.137</td>
</tr>
<tr>
<td>AP09</td>
<td>-2995333.55</td>
<td>5021089.705</td>
<td>2582070.61</td>
<td>0.088</td>
<td>0.148</td>
<td>0.082</td>
</tr>
<tr>
<td>AP28</td>
<td>-2967894.328</td>
<td>5017622.339</td>
<td>2579599.549</td>
<td>0.162</td>
<td>0.289</td>
<td>0.151</td>
</tr>
<tr>
<td>AF13</td>
<td>-2977517.853</td>
<td>5015177.949</td>
<td>2572921.091</td>
<td>0.12</td>
<td>0.206</td>
<td>0.114</td>
</tr>
<tr>
<td>AF14</td>
<td>-2971160.609</td>
<td>5015316.686</td>
<td>237934.504</td>
<td>0.1</td>
<td>0.172</td>
<td>0.096</td>
</tr>
<tr>
<td>AF15</td>
<td>-2969719.932</td>
<td>5011985.355</td>
<td>2587839.08</td>
<td>0.086</td>
<td>0.151</td>
<td>0.082</td>
</tr>
<tr>
<td>AF17</td>
<td>-2966908.775</td>
<td>5010410.456</td>
<td>2594154.094</td>
<td>0.109</td>
<td>0.19</td>
<td>0.101</td>
</tr>
<tr>
<td>AF21</td>
<td>-2960328.622</td>
<td>5011123.793</td>
<td>2600193.258</td>
<td>0.159</td>
<td>0.28</td>
<td>0.151</td>
</tr>
<tr>
<td>G044</td>
<td>-2984811.663</td>
<td>5016910.939</td>
<td>2561425.382</td>
<td>0.149</td>
<td>0.257</td>
<td>0.14</td>
</tr>
</tbody>
</table>

單位：公尺
圖一 DXF 圖檔以 AutoCad 軟體繪出成果

中部地區第三次監測網
三、測試結果

程式各測試結果均符合要求，詳如表十程式測試紀錄表。

表十 程式測試紀錄表

<table>
<thead>
<tr>
<th>日 期</th>
<th>程式測試紀錄表</th>
<th>頁次</th>
</tr>
</thead>
<tbody>
<tr>
<td>92/11/12</td>
<td></td>
<td>1/2</td>
</tr>
</tbody>
</table>

測試地點：衛星資訊研究中心
測試人員：鄭鼎耀

<table>
<thead>
<tr>
<th>測試項目</th>
<th>測試情形</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.新增計畫功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2.開啓計畫功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3.關閉計畫功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>4.計畫屬性功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>5.執行錯誤階段顯示訊息及原因</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>6.讀取 Gpsurvey 資料功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>7.讀取 Sinex 資料功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>8.讀取 TGO 資料功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>9.讀取 TurboNet 資料功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>10.讀取角邊觀測資料功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>11.讀取網形平差成果功能</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>12.基準參數設定</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>13.投影參數設定</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>14.基本網形平差</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>15.點位速度場及點位變形量分析</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>16.圖形輸出參數</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>17. DXF 圖形輸出</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>18.成果顯示</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>测试项目</td>
<td>测试情形</td>
<td>备注</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>19. 平面坐标转换</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>20. 基线统计分析</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>21. 点位统计分析</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>22. 结果统计分析</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>23. 介质测试</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>
附錄 B

（一）Gpsurvey 基線檔案格式：於 Gpsurvey 報表輸出項中選擇"detail"選項即可。

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>TAINAN0703</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processed:</td>
<td>Tuesday, August 14, 2001 14:41</td>
</tr>
<tr>
<td>Solution Output File (SSF):</td>
<td>WAVE 2.35 00003580 SSF</td>
</tr>
<tr>
<td>From Station:</td>
<td>CX01</td>
</tr>
<tr>
<td>Data file:</td>
<td>CX0011840.RNX</td>
</tr>
<tr>
<td>Antenna Height (meters):</td>
<td>0.000 True Vertical</td>
</tr>
<tr>
<td>Position Quality:</td>
<td>Point Positioning</td>
</tr>
<tr>
<td>WCS 84 Position:</td>
<td>22758' 33.207898" N</td>
</tr>
<tr>
<td></td>
<td>120712' 37.702387" E</td>
</tr>
<tr>
<td></td>
<td>44.270</td>
</tr>
<tr>
<td>To Station:</td>
<td>Z</td>
</tr>
<tr>
<td>Data file:</td>
<td>G086</td>
</tr>
<tr>
<td>Antenna Height (meters):</td>
<td>G0861841.RNX 1.648 True Vertical</td>
</tr>
<tr>
<td>WCS 84 Position:</td>
<td>22759' 27.051072" N</td>
</tr>
<tr>
<td></td>
<td>120711' 12.487602" E</td>
</tr>
<tr>
<td></td>
<td>23.177</td>
</tr>
<tr>
<td>Start Time:</td>
<td>Z</td>
</tr>
<tr>
<td>Stop Time:</td>
<td>01/7/3 00:03:10.00 GPS</td>
</tr>
<tr>
<td>Occupation Time Meas. Interval (seconds):</td>
<td>(112) 172990.00</td>
</tr>
<tr>
<td>Solution Type:</td>
<td>01/7/3 03:00:30.00 GPS</td>
</tr>
<tr>
<td>Solution Acceptability:</td>
<td>(112) 185650.00</td>
</tr>
<tr>
<td>Ephemeris:</td>
<td>02:57:30.00 30.00</td>
</tr>
<tr>
<td>Net Data:</td>
<td>Iono free fixed double difference</td>
</tr>
<tr>
<td>Baseline Slope Distance Std. Dev. (meters):</td>
<td>Passed ratio test</td>
</tr>
<tr>
<td>2938.441 0.000798</td>
<td></td>
</tr>
<tr>
<td>Backward</td>
<td>Forward</td>
</tr>
<tr>
<td>Normal Section Azimuth:</td>
<td>304718' 58.777389"</td>
</tr>
<tr>
<td>Vertical Angle:</td>
<td>124718'</td>
</tr>
<tr>
<td></td>
<td>-0725' 28.228047"</td>
</tr>
<tr>
<td></td>
<td>0723'</td>
</tr>
<tr>
<td>Baseline Components (meters):</td>
<td>dx 2432.737 dy 645.046 dz 0.003590 0.006165</td>
</tr>
<tr>
<td></td>
<td>1516.622</td>
</tr>
<tr>
<td>Standard Deviations (meters):</td>
<td>dx 2432.737 dy 645.046 dz 0.003590 0.006165</td>
</tr>
<tr>
<td></td>
<td>-21.77</td>
</tr>
<tr>
<td></td>
<td>dn 1656.534 dc -2426.902 du</td>
</tr>
</tbody>
</table>

 réussis.

100
0.007659

-21.093

0.007659

Aposteriori Covariance Matrix:
1.288599E-005
-2.130697E-005
3.681245E-005
1.762305E-005

9.087835E-006

Variance Ratio Cutoff:
5.1 2.5

Reference Variance:
2.146

Observable Count/Rejected RMS:
iono free phase 1570/0 0.017

Processor Controls:

[General]
Process start time:
01/7/3 00:00:00 GPS (1121 172800)
Process stop time:
01/7/3 23:59:30 GPS (1121 259170)
Elevation mask:
15 degrees
Maximum iterations:
10
Maximum fixable cycle slip:
600 seconds
Ephemeris:
Precise
Residuals:
Disabled
Antenna phase correction:
Enabled

[Observables]
L1 phase
Enabled
L2 phase
Enabled
Squared L2 phase
Enabled
LI C/A code
Enabled
L2 code (encrypted)
Enabled

[Static Network]
Baseline generation:
User defined
Min baseline observation time
120 seconds

[Quality]
Observation editing:
Edit multiplier
3.0
Ratio test:
Cutoff
2.5
Reference variance test:
Disabled

[Tropo Correction]
Model:
Hopfield
Estimated zenith delay interval:
1 hours
Use observed mets:
Enabled

[Ionco Correction]
Correction:
Ambiguity Pass
Final Pass
Ionco free
Ionco free
Static, Kinematic
Static, Kinematic
10 kilometers
0 kilometers

[Final Solution]
Final solution type:
L1 Fixed

[Satellites]
Disabled:
（二）Sinex 格式：節錄

Sinex 1.00 COD 02:211:66000 COD 02:206:85995 02:207:86370 0 00042 2 X
#
* SOLUTION INDEPENDENT EXCHANGE FORMAT (SINEX) FOR SPACE GEODESY.
* - SINEX VERSION 1.00
* - FILE CREATED BY PROGRAM ADONEQ V4.2
* - TECHNIQUE IS GPS (?)
* - SOLUTION COMMENTS:
#
* RMS OF UNIT WEIGHT: 0.0023 # OBS: 61605 # UNOBS: 189
#
* FILE/REFERENCE
DESCRIPTION CODE COORDINATE AND VELOCITY RESULTS IN SINEX FORMAT V1.00
OUTPUT UNIVERSITY OF BERN
CONTACT BERNINERB WK8232,UNIBH R.
SOFTWARE BERNINERB V4.1
HARDWARE VAX ALPHA
INPUT CODE
#
* FILE/REFERENCE
#
* FILE/COMMENT
#
* FILE/COMMENT
#
* INPUT/ACKNOWLEDGMENTS
AGY DESCRIPTION
CODE, Center for Orbit Determination in Europe, University of Bern
#
* INPUT/HISTORY
* O_PM VER AGY TIME_STAMP_ DAT DATA_START_ DATA_END_ T PARAM C TYPE
* SNS 1.00 COD 02:211:65580 COD 02:206:85995 02:207:86370 P 00042 2 X
* SNS 1.00 COD 02:211:66000 COD 02:206:85995 02:207:86370 P 00042 2 X
#
* INPUT/HISTORY
#
* INPUT/FILES
* AGY TIME_STAMP_ FILE_NAME DESCRIPTION
COD 02:211:65580 P:\V10725A\OUT\V10725A NSQ 1910726A
COD 02:211:66000 P:\V10725A\OUT\V10725A NSQ 1910726A
#
* INPUT/FILES
#
* SITE/ID
* CODE PT DAWES T STATION DESCRIPTION APPX_ Vox_ APPX_LAT_ APPX_H
NO11 A ------ P NO11
YMSM A ------ P YMSM
M044 A ------ P M044
W030 A ------ P W030
\nGA01 A ------ P GA01
GA08 A ------ P GA08
GA02 A ------ P GA02
GA03 A ------ P GA03
W004 A ------ P W004
W090 A ------ P W090
GA09 A ------ P GA09
FK02 A ------ P FK02
RVMW A ------ P RVMW
W091 A ------ P W091
#
* SITE/ID

102
（三）TGO 格式：

[General]
ProjName=ich
ProjCoordinateSystem=Taiwan (TWS97)
ProjCoordinateZone=Taiwan Island
ProjGeoidModel=IOC96 (Global)
GPSVectors= unk
CoordinateUnits=Meters
ElevationUnits=Meters
DistanceUnits=Meters
AngularUnits=Degrees
AntennaHeight= unk
PressureUnits= unk
TemperatureUnits= unk
MissingValues= unk
Separators= unk

[Stations]
Station= CE10892095: 24.334555690°'N: 120.616302503°E: 180.0512: 26910031.449: 211361.827: 161.5732: 0: 0: 0:
Station= LO33: 24.33217333°'N: 120.66867472°E: 171.3761: 2691856.163: 214357.363: 152.6441: 0: 0:
Station= LO40: 24.33103534°'N: 120.61051028°E: 91.9842: 2689744.512: 210468.928: 73.5233: 0: 0:
Station= LO242: 24.33914625°'N: 120.61762265°E: 123.2374: 2691839.372: 211196.566: 104.7962: 0: 0:

[Reyed In Coordinates]

[Oberved Coordinates]

[GPS]
Vector= CE10892095: 24.334555690°'N: 120.616302503°E: 180.0512: 26910031.449: 211361.827: 161.5732: 0: 0: 0:
Vector= LO33: 24.33217333°'N: 120.66867472°E: 171.3761: 2691856.163: 214357.363: 152.6441: 0: 0:
Vector= LO40: 24.33103534°'N: 120.61051028°E: 91.9842: 2689744.512: 210468.928: 73.5233: 0: 0:
Vector= LO242: 24.33914625°'N: 120.61762265°E: 123.2374: 2691839.372: 211196.566: 104.7962: 0: 0:

[Terrestrial]
[Level Run]
[Redced Observations]
[Azimuths]
（四）TurboNet 輸入基線格式：

Ashtech LINECOMP Version: WAVE 2.00b
E:\YU\0881\00000207.SSF
Date when the file was created 23:25 Size 4372 Bytes
Station ID: G103
Station (mark) 1 -2972110.408 5002090.276 2604729.476
Receiver serial # = aC1Y aC1Y aC1Y
antenna height(m) 1.476
Atm mcas p(mbar) t(°C) rh(%) 1010.0 20.0 50.0
input data file 1 : G1030881.DAT
Station ID: G102
Station (mark) 2 -3978358.002 4996478.281 2608670.090
Receiver serial # = aSC1 aSC1 aSC1
antenna height(m) 1.505
Atm mcas p(mbar) t(°C) rh(%) 1010.0 20.0 50.0
Group Header Record and Data Media Identifier follows
B21-JL-5 020621-JL-5 0318 1LINECOMP1.00 RBRAD 2 0 0 5
a392A
Vector 2 <--- 1 -5271.585 -4940.354 3940.615
row 1 0.166673500000000-05
row 2 -0.274488800000000-05 0.496770600000000-05
row 3 -0.145040900000000-05 0.261105100000000-05 0.151312100000000-05
Ratio sum-of-squares(2) to sum-of-squares(1) 26.90
Epoch interval (seconds): 5.000000
Measure of geometry: 0.005084 Wavelength = 0.190294 (m/cycle)
norm_meas = 1200 norm_used = 1200 rms_resid = 0.000314(m)
#BOPSUM
附錄 C

(一) 點位卡式坐標(檔名: cartesian.out)輸出格式: 自由格式，欄位間以 TAB 鍵區隔。

<table>
<thead>
<tr>
<th>代碼</th>
<th>點名</th>
<th>X 中誤差</th>
<th>Y 中誤差</th>
<th>Z 中誤差</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>-2972110.408</td>
<td>0.001</td>
<td>5002000.276</td>
</tr>
<tr>
<td>2</td>
<td>G102</td>
<td>-2977381.993</td>
<td>0.006</td>
<td>4997059.943</td>
</tr>
<tr>
<td>3</td>
<td>M075</td>
<td>-2983234.506</td>
<td>0.017</td>
<td>4994721.959</td>
</tr>
<tr>
<td>4</td>
<td>M004</td>
<td>-2961501.479</td>
<td>0.006</td>
<td>5006267.712</td>
</tr>
<tr>
<td>5</td>
<td>M068</td>
<td>-2955008.764</td>
<td>0.008</td>
<td>5012136.095</td>
</tr>
<tr>
<td>6</td>
<td>G006</td>
<td>-2957186.711</td>
<td>0.008</td>
<td>5007913.544</td>
</tr>
<tr>
<td>7</td>
<td>M045</td>
<td>-2964397.327</td>
<td>0.006</td>
<td>5001529.06</td>
</tr>
<tr>
<td>8</td>
<td>M714</td>
<td>-2980883.13</td>
<td>0.014</td>
<td>4993722.048</td>
</tr>
<tr>
<td>9</td>
<td>M049</td>
<td>-2954714.615</td>
<td>0.015</td>
<td>5026001.59</td>
</tr>
<tr>
<td>10</td>
<td>AF05</td>
<td>-2968804.218</td>
<td>0.013</td>
<td>5022800.097</td>
</tr>
<tr>
<td>11</td>
<td>M000</td>
<td>-2950389.493</td>
<td>0.015</td>
<td>5027247.903</td>
</tr>
<tr>
<td>12</td>
<td>M007</td>
<td>-2969031.32</td>
<td>0.011</td>
<td>5013814.372</td>
</tr>
</tbody>
</table>

(二) 點位球面坐標(檔名: geodetic.out)輸出格式: 自由格式，欄位間以 TAB 鍵區隔。

<table>
<thead>
<tr>
<th>代碼</th>
<th>點名</th>
<th>緯度</th>
<th>經度</th>
<th>極差</th>
<th>遠距</th>
<th>輻射</th>
<th>極差</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>24.153825249</td>
<td>0.001</td>
<td>120.430523158</td>
<td>0.001</td>
<td>247.262</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>G102</td>
<td>24.175571039</td>
<td>0.002</td>
<td>120.471542105</td>
<td>0.002</td>
<td>454.64</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M075</td>
<td>24.164575581</td>
<td>0.005</td>
<td>120.505610236</td>
<td>0.005</td>
<td>569.926</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M004</td>
<td>24.175475529</td>
<td>0.002</td>
<td>120.362451015</td>
<td>0.002</td>
<td>233.486</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>M068</td>
<td>24.1522644</td>
<td>0.002</td>
<td>120.312048588</td>
<td>0.002</td>
<td>43.851</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>G006</td>
<td>24.184322171</td>
<td>0.002</td>
<td>120.334308306</td>
<td>0.002</td>
<td>52.729</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>M045</td>
<td>24.212308166</td>
<td>0.002</td>
<td>120.39185273</td>
<td>0.002</td>
<td>275.829</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>M714</td>
<td>24.193339353</td>
<td>0.004</td>
<td>120.50026904</td>
<td>0.004</td>
<td>564.57</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>M049</td>
<td>23.584328072</td>
<td>0.005</td>
<td>120.26462515</td>
<td>0.005</td>
<td>56.566</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AF05</td>
<td>23.553479537</td>
<td>0.004</td>
<td>120.350913848</td>
<td>0.004</td>
<td>78.098</td>
<td></td>
</tr>
</tbody>
</table>
(三) 點位平面坐標 (檔名: plane.out) 輸出格式: 自由格式, 欄位間以 TAB 鍵區隔。

<table>
<thead>
<tr>
<th>代碼</th>
<th>點名</th>
<th>N</th>
<th>中誤差</th>
<th>E</th>
<th>中誤差</th>
<th>槓距</th>
<th>中誤差</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>2683907.107</td>
<td>0.153</td>
<td>221736.727</td>
<td>0.116</td>
<td>227.17</td>
<td>0.784</td>
</tr>
<tr>
<td>2</td>
<td>G102</td>
<td>2688123.277</td>
<td>0.168</td>
<td>228459.793</td>
<td>0.152</td>
<td>434.218</td>
<td>1.03</td>
</tr>
<tr>
<td>3</td>
<td>M075</td>
<td>2683960.805</td>
<td>0</td>
<td>234662.327</td>
<td>0</td>
<td>545.587</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>M094</td>
<td>2688133.876</td>
<td>0.171</td>
<td>210086.384</td>
<td>0.155</td>
<td>213.238</td>
<td>1.017</td>
</tr>
<tr>
<td>5</td>
<td>M906</td>
<td>2663341.007</td>
<td>0.185</td>
<td>201897.864</td>
<td>0.172</td>
<td>23.682</td>
<td>1.182</td>
</tr>
<tr>
<td>6</td>
<td>G090</td>
<td>2689636.536</td>
<td>0.182</td>
<td>205539.385</td>
<td>0.169</td>
<td>32.479</td>
<td>1.155</td>
</tr>
<tr>
<td>7</td>
<td>M045</td>
<td>2694550.004</td>
<td>0.17</td>
<td>215008.947</td>
<td>0.154</td>
<td>255.554</td>
<td>1.014</td>
</tr>
<tr>
<td>8</td>
<td>M714</td>
<td>2690967.054</td>
<td>0.216</td>
<td>193640.636</td>
<td>0.216</td>
<td>543.746</td>
<td>1.679</td>
</tr>
<tr>
<td>9</td>
<td>M049</td>
<td>2652765.241</td>
<td>0.198</td>
<td>207829.762</td>
<td>0.188</td>
<td>35.743</td>
<td>1.552</td>
</tr>
<tr>
<td>10</td>
<td>AF03</td>
<td>2643841.591</td>
<td>0.217</td>
<td>189754.950</td>
<td>0.217</td>
<td>27.707</td>
<td>1.111</td>
</tr>
<tr>
<td>11</td>
<td>M300</td>
<td>2657413.686</td>
<td>0.152</td>
<td>212651.839</td>
<td>0.132</td>
<td>57.843</td>
<td>1.037</td>
</tr>
<tr>
<td>12</td>
<td>M907</td>
<td>2662569.825</td>
<td>0.243</td>
<td>240767.161</td>
<td>0.238</td>
<td>1.0283</td>
<td>1.823</td>
</tr>
</tbody>
</table>

(四) 基線卡式坐標分量 (檔名: cartesian_baseline.out) 輸出格式: 自由格式, 欄位間以 TAB 鍵區隔。

<table>
<thead>
<tr>
<th>代碼</th>
<th>點名</th>
<th>偏離承載點</th>
<th>偏離承載點</th>
<th>偏離承載點</th>
<th>偏離承載點</th>
<th>DX(公尺)</th>
<th>改正數(公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>-0.264</td>
<td>-0.4</td>
<td>3940.615</td>
<td>-2.626</td>
<td>-0.8</td>
<td>0.49</td>
</tr>
<tr>
<td>2</td>
<td>G102</td>
<td>-3.83</td>
<td>-6.1</td>
<td>2026.083</td>
<td>-3.911</td>
<td>-11.7</td>
<td>0.94</td>
</tr>
<tr>
<td>3</td>
<td>M075</td>
<td>0.25254557863199956</td>
<td>-0.124</td>
<td>-0.2</td>
<td>3822.826</td>
<td>-0.126</td>
<td>-0.4</td>
</tr>
<tr>
<td>4</td>
<td>M904</td>
<td>-0.072</td>
<td>-0.1</td>
<td>521.408</td>
<td>-0.071</td>
<td>-0.2</td>
<td>0.47</td>
</tr>
<tr>
<td>5</td>
<td>G090</td>
<td>0.013</td>
<td>0</td>
<td>4573.569</td>
<td>-0.014</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>M045</td>
<td>0.002</td>
<td>0</td>
<td>-1284.647</td>
<td>-0.002</td>
<td>0</td>
<td>0.53</td>
</tr>
<tr>
<td>7</td>
<td>M906</td>
<td>0.058</td>
<td>0.3</td>
<td>-5628.883</td>
<td>0.055</td>
<td>0.1</td>
<td>0.62</td>
</tr>
<tr>
<td>8</td>
<td>G103</td>
<td>0.147</td>
<td>0.3</td>
<td>-9681.047</td>
<td>0.143</td>
<td>0.5</td>
<td>0.53</td>
</tr>
<tr>
<td>9</td>
<td>M045</td>
<td>0.946965682148512</td>
<td>0.3</td>
<td>-9681.047</td>
<td>0.143</td>
<td>0.5</td>
<td>0.53</td>
</tr>
</tbody>
</table>
（五）基線球面坐標分量（檔名：geodetic_baseline.out）輸出格式：自由格式，欄位間以 TAB 鍵區隔。

<table>
<thead>
<tr>
<th>代碼</th>
<th>活動點名</th>
<th>前點名</th>
<th>鋪底基差(公尺)</th>
<th>改正數(公尺)</th>
<th>標準化改正數(公尺)</th>
<th>標準化改正數</th>
</tr>
</thead>
<tbody>
<tr>
<td>G103</td>
<td>G314</td>
<td>G103</td>
<td>G314</td>
<td>-0.026708000</td>
<td>-0.027875000</td>
<td></td>
</tr>
<tr>
<td>0.008</td>
<td>1.2</td>
<td>-0.015478700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.8</td>
<td>233.296</td>
<td>-0.023</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.001</td>
<td>0.1</td>
<td>0.247179000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td>0.2</td>
<td>353.333</td>
<td>0.012</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G103</td>
<td>G324</td>
<td>G103</td>
<td>G324</td>
<td>-0.022517700</td>
<td>-0.022986000</td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td>0.9</td>
<td>-0.012860700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>0.3</td>
<td>297.519</td>
<td>-0.021</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G103</td>
<td>G326</td>
<td>G103</td>
<td>G326</td>
<td>-0.020984900</td>
<td>-0.020984900</td>
<td></td>
</tr>
<tr>
<td>-0.004</td>
<td>0.8</td>
<td>-0.083478400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td>0.4</td>
<td>-111.232</td>
<td>0.015</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G103</td>
<td>G330</td>
<td>G103</td>
<td>G330</td>
<td>-0.071726800</td>
<td>-0.071726800</td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td>1</td>
<td>-0.051915200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td>0.3</td>
<td>277.624</td>
<td>-0.019</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G103</td>
<td>G345</td>
<td>G103</td>
<td>G345</td>
<td>-0.071726800</td>
<td>-0.071726800</td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>0.4</td>
<td>-0.020939300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.006</td>
<td>0.4</td>
<td>274.546</td>
<td>-0.017</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G103</td>
<td>M428</td>
<td>G103</td>
<td>M428</td>
<td>-0.040082600</td>
<td>-0.040082600</td>
<td></td>
</tr>
</tbody>
</table>

（六）基線平面坐標分量（檔名：plane_baseline.out）輸出格式：自由格式，欄位間以 TAB 鍵區隔。

<table>
<thead>
<tr>
<th>代碼</th>
<th>活動點名</th>
<th>前點名</th>
<th>DN(公尺)</th>
<th>改正數(公尺)</th>
<th>標準化改正數(公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G103</td>
<td>G102</td>
<td>G103</td>
<td>DN1 001</td>
<td>207.377</td>
<td>-0.001</td>
</tr>
<tr>
<td>0</td>
<td>7062.921</td>
<td>0.001</td>
<td>G103</td>
<td>M075</td>
<td>2056.073</td>
</tr>
<tr>
<td>0.1</td>
<td>13282.923</td>
<td>0.004</td>
<td>G103</td>
<td>M090</td>
<td>4225.827</td>
</tr>
<tr>
<td>0.1</td>
<td>-11290.368</td>
<td>0.1</td>
<td>G103</td>
<td>M096</td>
<td>-13.781</td>
</tr>
<tr>
<td>0.1</td>
<td>-19878.836</td>
<td>0</td>
<td>G103</td>
<td>M090</td>
<td>-203.41</td>
</tr>
<tr>
<td>0.1</td>
<td>9469.552</td>
<td>0</td>
<td>G090</td>
<td>M045</td>
<td>223.102</td>
</tr>
<tr>
<td>0.1</td>
<td>4546.982</td>
<td>0</td>
<td>G090</td>
<td>M090</td>
<td>180.756</td>
</tr>
<tr>
<td>0.1</td>
<td>-4041.485</td>
<td>0.1</td>
<td>G090</td>
<td>M096</td>
<td>-8.879</td>
</tr>
<tr>
<td>0</td>
<td>M045</td>
<td>G103</td>
<td>M045</td>
<td>G103</td>
<td>-10622.94</td>
</tr>
<tr>
<td>0.3</td>
<td>6367.828</td>
<td>0.3</td>
<td>M045</td>
<td>M014</td>
<td>-28.575</td>
</tr>
<tr>
<td>0.5</td>
<td>18150.452</td>
<td>1.4</td>
<td>M045</td>
<td>M049</td>
<td>288.794</td>
</tr>
<tr>
<td>0.8</td>
<td>14189.011</td>
<td>1.2</td>
<td>M049</td>
<td>M049</td>
<td>21.521</td>
</tr>
</tbody>
</table>

107
(七) 重覆基線 (檔名: duplicate_baseline_check.out)
輸出格式：自由格式，欄位間以 TAB 鍵區隔

<table>
<thead>
<tr>
<th>代碼</th>
<th>前點名</th>
<th>後點名</th>
<th>DX (公尺)</th>
<th>DY (公尺)</th>
<th>DX 差值 (公尺)</th>
<th>DY 差值 (公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G103</td>
<td>M315</td>
<td>-3667.39</td>
<td>-3776.35</td>
<td>-4011.81</td>
<td>-4011.807</td>
</tr>
<tr>
<td>2</td>
<td>G103</td>
<td>M714</td>
<td>-8772.756</td>
<td>-8278.221</td>
<td>-5838.85</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M003</td>
<td>AF01</td>
<td>-22936.297</td>
<td>-11596.215</td>
<td>-2875.954</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M003</td>
<td>AF01</td>
<td>-22936.293</td>
<td>-11596.223</td>
<td>-2875.963</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M003</td>
<td>G040</td>
<td>-32303.517</td>
<td>-14553.13</td>
<td>-8548.381</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M003</td>
<td>G040</td>
<td>-32303.51</td>
<td>-14553.149</td>
<td>-8548.386</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M044</td>
<td>AF15</td>
<td>-6456.114</td>
<td>-1724.324</td>
<td>-4515.541</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M044</td>
<td>M044</td>
<td>6456.364</td>
<td>1724.153</td>
<td>4515.379</td>
<td></td>
</tr>
</tbody>
</table>

(八) 基線閉合差檢查 (檔名: closure_check.out)
輸出格式：自由格式，欄位間以 TAB 鍵區隔

<table>
<thead>
<tr>
<th>代碼</th>
<th>前點名</th>
<th>後點名</th>
<th>X 方向閉合 (公尺)</th>
<th>Y 方向閉合 (公尺)</th>
<th>Z 方向閉合 (公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>M314</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G103</td>
<td>M315</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>G103</td>
<td>M324</td>
<td>0.001</td>
<td>0.002</td>
<td>-0.011</td>
</tr>
<tr>
<td>4</td>
<td>G103</td>
<td>M326</td>
<td>0.003</td>
<td>-0.017</td>
<td>0.002</td>
</tr>
<tr>
<td>5</td>
<td>G103</td>
<td>M330</td>
<td>-0.004</td>
<td>0.009</td>
<td>-0.007</td>
</tr>
<tr>
<td>6</td>
<td>G103</td>
<td>M345</td>
<td>-0.004</td>
<td>-0.008</td>
<td>0.007</td>
</tr>
<tr>
<td>7</td>
<td>G103</td>
<td>M428</td>
<td>0</td>
<td>-0.011</td>
<td>0.003</td>
</tr>
<tr>
<td>8</td>
<td>G103</td>
<td>M714</td>
<td>0.001</td>
<td>-0.012</td>
<td>-0.002</td>
</tr>
<tr>
<td>9</td>
<td>G103</td>
<td>M805</td>
<td>0.016</td>
<td>-0.009</td>
<td>-0.006</td>
</tr>
<tr>
<td>10</td>
<td>G103</td>
<td>M804</td>
<td>0.005</td>
<td>-0.014</td>
<td>0.003</td>
</tr>
<tr>
<td>11</td>
<td>G103</td>
<td>M906</td>
<td>-0.12</td>
<td>-0.059</td>
<td>0.102</td>
</tr>
<tr>
<td>12</td>
<td>G103</td>
<td>M916</td>
<td>0</td>
<td>-0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>13</td>
<td>M003</td>
<td>AF01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
（九）距離及方位角檢核（檔名：disaz_check.out）輸出格式：自由格式，欄位間以 TAB 鏈接隔

<table>
<thead>
<tr>
<th>代碼</th>
<th>討點名</th>
<th>暖點點名</th>
<th>真載位 (公尺)</th>
<th>相對精度</th>
<th>差值 (公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>M315</td>
<td>29652345.902</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>2</td>
<td>G103</td>
<td>M324</td>
<td>1061932.213</td>
<td>-0.086</td>
<td>-0.086</td>
</tr>
<tr>
<td>3</td>
<td>G103</td>
<td>M326</td>
<td>3609568.03</td>
<td>-0.022</td>
<td>-0.022</td>
</tr>
<tr>
<td>4</td>
<td>G103</td>
<td>M330</td>
<td>999999999.0</td>
<td>-0.049</td>
<td>-0.049</td>
</tr>
<tr>
<td>5</td>
<td>G103</td>
<td>M345</td>
<td>5587314.299</td>
<td>-0.031</td>
<td>-0.031</td>
</tr>
<tr>
<td>6</td>
<td>G103</td>
<td>M428</td>
<td>999999999.0</td>
<td>-0.031</td>
<td>-0.031</td>
</tr>
<tr>
<td>7</td>
<td>G103</td>
<td>M714</td>
<td>2687389.124</td>
<td>0.018</td>
<td>0.018</td>
</tr>
<tr>
<td>8</td>
<td>G103</td>
<td>M805</td>
<td>2319040.642</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>9</td>
<td>G103</td>
<td>M904</td>
<td>999999999.0</td>
<td>-0.034</td>
<td>-0.034</td>
</tr>
<tr>
<td>10</td>
<td>G103</td>
<td>M906</td>
<td>4479935.473</td>
<td>-0.019</td>
<td>-0.019</td>
</tr>
</tbody>
</table>

（十）點位誤差椭圓（檔名：absolut_ellipsoid.out）輸出格式：自由格式，欄位間以 TAB 鏈接隔

<table>
<thead>
<tr>
<th>代碼</th>
<th>點名</th>
<th>長軸 (公尺)</th>
<th>短軸 (公尺)</th>
<th>方位角</th>
<th>椭球高差差 (公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>0.002</td>
<td>0.002</td>
<td>60.34</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>M314</td>
<td>0.004</td>
<td>0.003</td>
<td>114.96</td>
<td>0.023</td>
</tr>
<tr>
<td>3</td>
<td>M315</td>
<td>0.004</td>
<td>0.004</td>
<td>36.14</td>
<td>0.036</td>
</tr>
<tr>
<td>4</td>
<td>M324</td>
<td>0.003</td>
<td>0.003</td>
<td>107.4</td>
<td>0.023</td>
</tr>
<tr>
<td>5</td>
<td>M325</td>
<td>0.003</td>
<td>0.003</td>
<td>109.92</td>
<td>0.019</td>
</tr>
<tr>
<td>6</td>
<td>M330</td>
<td>0.003</td>
<td>0.003</td>
<td>96.4</td>
<td>0.022</td>
</tr>
<tr>
<td>7</td>
<td>M345</td>
<td>0.004</td>
<td>0.003</td>
<td>100.52</td>
<td>0.028</td>
</tr>
<tr>
<td>8</td>
<td>M428</td>
<td>0.003</td>
<td>0.003</td>
<td>109.08</td>
<td>0.026</td>
</tr>
<tr>
<td>9</td>
<td>M714</td>
<td>0.004</td>
<td>0.003</td>
<td>101.88</td>
<td>0.038</td>
</tr>
<tr>
<td>10</td>
<td>M805</td>
<td>0.003</td>
<td>0.003</td>
<td>111.58</td>
<td>0.026</td>
</tr>
</tbody>
</table>

（十一）相對誤差椭圓（檔名：relate_ellipsoid.out）輸出格式：自由格式，欄位間以 TAB 鏈接隔

<table>
<thead>
<tr>
<th>代碼</th>
<th>討點名</th>
<th>暖點點名</th>
<th>長軸 (公尺)</th>
<th>短軸 (公尺)</th>
<th>方位角</th>
<th>椭球高差差 (公尺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G103</td>
<td>M314</td>
<td>0.003</td>
<td>0.003</td>
<td>114.94</td>
<td>0.025</td>
</tr>
<tr>
<td>2</td>
<td>G103</td>
<td>M315</td>
<td>0.004</td>
<td>0.003</td>
<td>36.47</td>
<td>0.03</td>
</tr>
<tr>
<td>3</td>
<td>G103</td>
<td>M324</td>
<td>0.003</td>
<td>0.002</td>
<td>107.4</td>
<td>0.023</td>
</tr>
<tr>
<td>4</td>
<td>G103</td>
<td>M326</td>
<td>0.002</td>
<td>0.002</td>
<td>109.9</td>
<td>0.019</td>
</tr>
<tr>
<td>5</td>
<td>G103</td>
<td>M330</td>
<td>0.003</td>
<td>0.002</td>
<td>96.39</td>
<td>0.022</td>
</tr>
</tbody>
</table>
（十二）點位變形量（檔名：deformation.out）輸出格式：自由格式，欄位間以TAB鍵區隔。

<table>
<thead>
<tr>
<th>計測次序</th>
<th>站點名</th>
<th>E方向變形量</th>
<th>中誤差</th>
<th>H方向變形量</th>
<th>中誤差</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFO1</td>
<td>0.021920310126783</td>
<td>8.0910</td>
<td>3.3166247903554E-03</td>
<td>4.830</td>
<td>2.82842712474619E-03</td>
</tr>
<tr>
<td>APO4</td>
<td>2.262741697996595E-02</td>
<td>7.883</td>
<td>3.5533930593274E-03</td>
<td>3.688</td>
<td>2.82842712474619E-03</td>
</tr>
<tr>
<td>AFO5</td>
<td>8.045</td>
<td>2.61406542355969E-03</td>
<td>4.821</td>
<td>2.61406452355969E-03</td>
<td>21.809</td>
</tr>
<tr>
<td>AFO9</td>
<td>7.997</td>
<td>2.61406452355969E-03</td>
<td>4.845</td>
<td>2.82842712474619E-03</td>
<td>21.8095</td>
</tr>
<tr>
<td>APO12</td>
<td>8.028</td>
<td>2.82842712474619E-03</td>
<td>4.777</td>
<td>2.82842712474619E-03</td>
<td>21.808</td>
</tr>
<tr>
<td>APO14</td>
<td>8.006</td>
<td>2.61406452355969E-03</td>
<td>4.792</td>
<td>2.61406452355969E-03</td>
<td>21.87</td>
</tr>
<tr>
<td>APO15</td>
<td>7.975</td>
<td>2.1213043455964E-03</td>
<td>4.797</td>
<td>2.1213043455964E-03</td>
<td>21.855</td>
</tr>
<tr>
<td>AFO17</td>
<td>7.955</td>
<td>2.67706306736817E-03</td>
<td>4.806</td>
<td>2.67706306736817E-03</td>
<td>21.8345</td>
</tr>
<tr>
<td>AFO21</td>
<td>7.928</td>
<td>2.82842712474619E-03</td>
<td>4.843</td>
<td>2.82842712474619E-03</td>
<td>21.7965</td>
</tr>
<tr>
<td>APO22</td>
<td>8.034</td>
<td>2.82842712474619E-03</td>
<td>4.740</td>
<td>0.082070014849E-03</td>
<td>21.8505</td>
</tr>
<tr>
<td>APO24</td>
<td>8.009</td>
<td>2.61406452355969E-03</td>
<td>4.758</td>
<td>2.61406452355969E-03</td>
<td>21.8265</td>
</tr>
</tbody>
</table>

（十三）點位速度量（檔名：velocity.out）輸出格式：自由格式，欄位間以TAB鍵區隔。

<table>
<thead>
<tr>
<th>計測次序</th>
<th>站點名</th>
<th>E方向速度量</th>
<th>中誤差</th>
<th>H方向速度量</th>
<th>中誤差</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFO1</td>
<td>2.725</td>
<td>5.74435625653803E-03</td>
<td>1.801</td>
<td>4.8989794855663E-03</td>
<td>7.508</td>
</tr>
<tr>
<td>APO4</td>
<td>2.627</td>
<td>0.005</td>
<td>6.229</td>
<td>0.004</td>
<td>6.798</td>
</tr>
<tr>
<td>APO5</td>
<td>2.710</td>
<td>4.52769256906871E-03</td>
<td>1.798</td>
<td>4.52769256906871E-03</td>
<td>7.504</td>
</tr>
<tr>
<td>AFO9</td>
<td>8.654</td>
<td>4.52769256906871E-03</td>
<td>1.807</td>
<td>4.8989794855663E-03</td>
<td>7.5025</td>
</tr>
<tr>
<td>APO12</td>
<td>7.605</td>
<td>4.8989794855663E-03</td>
<td>1.783</td>
<td>4.8989794855663E-03</td>
<td>7.503</td>
</tr>
<tr>
<td>APO14</td>
<td>7.697</td>
<td>4.52769256906871E-03</td>
<td>1.787</td>
<td>4.52769256906871E-03</td>
<td>7.532</td>
</tr>
<tr>
<td>APO15</td>
<td>7.687</td>
<td>3.674234614177E-03</td>
<td>1.790</td>
<td>3.674234614177E-03</td>
<td>7.522</td>
</tr>
</tbody>
</table>
(十四) 點位變形量內插(檔名：intslip.out)輸出格式：

<table>
<thead>
<tr>
<th>點名</th>
<th>內插(N mm)</th>
<th>內插(E mm)</th>
<th>N 变形量(m)</th>
<th>E 变形量(m)</th>
<th>變形後(N mm)</th>
<th>變形後(E mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1830000.00</td>
<td>-0.177</td>
<td>0.468</td>
<td>2621999.823</td>
<td>180000.468</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1830000.00</td>
<td>-0.102</td>
<td>0.410</td>
<td>2621999.898</td>
<td>182000.410</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1840000.00</td>
<td>-0.027</td>
<td>0.251</td>
<td>2621999.973</td>
<td>184000.351</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1850000.00</td>
<td>0.048</td>
<td>0.283</td>
<td>2622000.048</td>
<td>186000.293</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1880000.00</td>
<td>0.040</td>
<td>0.253</td>
<td>2622000.040</td>
<td>188000.253</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1900000.00</td>
<td>-0.035</td>
<td>0.228</td>
<td>2621999.965</td>
<td>190000.238</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1920000.00</td>
<td>-0.107</td>
<td>0.201</td>
<td>2621999.983</td>
<td>192000.203</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1940000.00</td>
<td>-0.175</td>
<td>0.177</td>
<td>2621999.925</td>
<td>194000.177</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1960000.00</td>
<td>-0.064</td>
<td>0.030</td>
<td>2621999.936</td>
<td>196000.030</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>1980000.00</td>
<td>0.088</td>
<td>0.026</td>
<td>2622000.088</td>
<td>197999.974</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2000000.00</td>
<td>0.161</td>
<td>0.082</td>
<td>2622000.161</td>
<td>199999.918</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2020000.00</td>
<td>0.139</td>
<td>0.140</td>
<td>2622000.139</td>
<td>201999.860</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2040000.00</td>
<td>0.045</td>
<td>-0.088</td>
<td>2622000.045</td>
<td>203999.912</td>
</tr>
</tbody>
</table>

(十五) 點位速度量內插(檔名：intvel.out)輸出格式：

<table>
<thead>
<tr>
<th>點名</th>
<th>內插(N mm)</th>
<th>內插(E mm)</th>
<th>N 速度量(m)</th>
<th>E 速度量(m)</th>
<th>變形後(N mm)</th>
<th>變形後(E mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2020000.00</td>
<td>-0.023</td>
<td>0.385</td>
<td>2622999.977</td>
<td>202000.385</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2040000.00</td>
<td>-0.074</td>
<td>0.243</td>
<td>2622999.926</td>
<td>204000.245</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2060000.00</td>
<td>-0.105</td>
<td>0.133</td>
<td>2622999.895</td>
<td>206000.133</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2080000.00</td>
<td>-0.084</td>
<td>0.058</td>
<td>2622999.916</td>
<td>208000.058</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2100000.00</td>
<td>-0.151</td>
<td>0.074</td>
<td>2622999.849</td>
<td>210000.074</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2120000.00</td>
<td>-0.314</td>
<td>0.164</td>
<td>2622999.686</td>
<td>212000.164</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2140000.00</td>
<td>-0.169</td>
<td>0.100</td>
<td>2622999.831</td>
<td>214000.100</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2160000.00</td>
<td>-0.157</td>
<td>0.121</td>
<td>2622999.843</td>
<td>216000.121</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2180000.00</td>
<td>-0.188</td>
<td>0.163</td>
<td>2622999.812</td>
<td>218000.163</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2200000.00</td>
<td>-0.101</td>
<td>0.487</td>
<td>2622999.899</td>
<td>220000.487</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2220000.00</td>
<td>0.372</td>
<td>0.235</td>
<td>2622800.372</td>
<td>222000.235</td>
</tr>
<tr>
<td>inp</td>
<td>2622000.00</td>
<td>2240000.00</td>
<td>0.786</td>
<td>-0.010</td>
<td>2622800.786</td>
<td>223999.990</td>
</tr>
<tr>
<td>inp</td>
<td>2622800.00</td>
<td>2260000.00</td>
<td>1.076</td>
<td>-0.219</td>
<td>2622801.076</td>
<td>225999.781</td>
</tr>
</tbody>
</table>

(十六) 方差-協方差係數矩陣(檔名：inverse.out)輸出格式：

點位部分: 10A8
係數部分: SF16.0
建立基本控制測量網形平差及點位速度場變化量分析模式

（十七）土地測量局控制點描交成果格式：

1. 自由網成果：主檔名為 "free" + "計畫名稱"，副檔名為 big、ctl、ppm等三個；主檔名為 "計畫名稱"，副檔名為 frc、fro等二個；主檔名為 "計畫名稱" + "free"，副檔名為 cor一個及free.cmp等共七個檔案。

2. 約制網成果：主檔名為 "fix" + "計畫名稱"，副檔名為 big、ctl、ppm等三個；主檔名為 "計畫名稱"，副檔名為 fic、fio、ctl等三個；主檔名為 "計畫名稱" + "free"，副檔名為 cor一個等共七個檔案。
附錄 D

（一）點位速度量 DXF 轉 AUTOCAD 成果：

速度量圖
（二）點位變形量 DXF 轉 AUTOCAD 成果：

變形量圖
Job History Report

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Output Destination</th>
<th>Job Info</th>
<th>Page Info</th>
<th>Pages</th>
<th>Sheets</th>
<th>Job Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003/12/22 20:59:37</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>2</td>
<td>2</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/23 10:25:07</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>2</td>
<td>2</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/23 10:26:32</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/23 10:35:31</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/23 16:40:22</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/23 18:08:57</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>6</td>
<td>6</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/23 18:17:45</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>6</td>
<td>6</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/24 17:39:06</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>6</td>
<td>6</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/24 18:02:54</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>6</td>
<td>6</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/24 18:50:47</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>2</td>
<td>2</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/24 19:57:25</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/25 10:59:56</td>
<td>Output Tray</td>
<td>2 Sided</td>
<td>A4</td>
<td>4</td>
<td>2</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/25 11:14:34</td>
<td>Output Tray</td>
<td>2 Sided</td>
<td>A4</td>
<td>182</td>
<td>91</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/25 11:14:37</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/25 14:28:41</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>B5</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/25 14:30:36</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>B5</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/25 14:33:54</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>B5</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/25 14:40:51</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/25 16:27:40</td>
<td>Output Tray</td>
<td>1 Sided</td>
<td>A4</td>
<td>1</td>
<td>1</td>
<td>Completed</td>
</tr>
</tbody>
</table>

Document Centre 405
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Input Source</th>
<th>Output Destination</th>
<th>Job Info</th>
<th>Page Info</th>
<th>Pages</th>
<th>Sheets</th>
<th>Job Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003/12/26</td>
<td>14:38:40</td>
<td>LPD: JESMINE : ektMICdor Word - NQZteA5JW</td>
<td>Output Tray</td>
<td></td>
<td>1 Sided-PCL</td>
<td>A4</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/26</td>
<td>17:05:03</td>
<td>LPD: JESMINE : ektMICdor Word - キャスケード80Gy</td>
<td>Output Tray</td>
<td></td>
<td>1 Sided-PCL</td>
<td>A4</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/26</td>
<td>18:41:35</td>
<td>LPD: JESMINE : ektMICdor Word - キャスケード80Gy</td>
<td>Output Tray</td>
<td></td>
<td>1 Sided-PCL</td>
<td>A4</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/26</td>
<td>18:45:46</td>
<td>LPD: JESMINE : ektMICdor Word - キャスケード80Gy</td>
<td>Output Tray</td>
<td></td>
<td>1 Sided-PCL</td>
<td>A4</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/26</td>
<td>19:07:25</td>
<td>LPD: JESMINE : ektMICdor Word - キャスケード80Gy</td>
<td>Output Tray</td>
<td></td>
<td>1 Sided-PCL</td>
<td>A4</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/26</td>
<td>19:08:13</td>
<td>LPD: JESMINE : ektMICdor Word - キャスケード80Gy</td>
<td>Output Tray</td>
<td></td>
<td>1 Sided-PCL</td>
<td>A4</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/26</td>
<td>21:31:49</td>
<td>LPD: CTN : ektMICdor Word - キャスケード80Gy</td>
<td>Output Tray</td>
<td></td>
<td>1 Sided-PCL</td>
<td>A4</td>
<td></td>
<td>Completed</td>
</tr>
<tr>
<td>2003/12/26</td>
<td>22:00:27</td>
<td>LPD: CTN : ektMICdor Word - キャスケード80Gy</td>
<td>Output Tray</td>
<td></td>
<td>2 Sided-PCL</td>
<td>A4</td>
<td></td>
<td>Completed</td>
</tr>
</tbody>
</table>