行政院農業委員會漁業署九十六年度科技計畫研究報告

計畫名稱：小型漁船減少興波阻力之研究 (第3年/全程3年)
(英文名稱) The study on the reduction of wave making resistance for small fishing boats

計畫編號：96農科-15.3.1-漁-F3(6)

全程計畫期間：94年1月1日至96年12月31日
今年計畫期間：96年5月8日至96年12月31日

計畫主持人：黃正弘
執行機關：國立成功大學
行政院農業委員會漁業署九十六年度試驗研究計畫期中報告

計畫名稱：小型漁船減少興波阻力之研究

英文名稱：The study on the reduction of wave making resistance for small fishing boats

計畫編號：96 農科-15.3.1-漁-F3(6)

全程執行期間：民國九十六年五月八日至九十六年十二月三十一日

計畫主持人：黃正弘

計畫研究人員：林仲文 陳麒安

執行機關：國立成功大學漁船及船舶機械研究中心
目 録

摘 要 ... 2
第一章 緒論 .. 3
 1-1 研究背景與目的 ... 3
 1-2 文獻回顧 .. 3
第二章 KCS LINES 與 SHIPFLOW 軟體使用簡介 4
 2-1 Tribon M1 簡介 ... 5
 2-2 Tribon M1-Initial Design Lines 使用說明 6
 2-2.1 輸入檔的先前準備 6
 2-2.2 基本操作說明 .. 7
 2-3 SHIPFLOW 簡介 ... 13
第三章 消波翼最佳化設計 .. 15
 3-1 直接解問題之理論 .. 15
 3-2 B-Spline 曲面 .. 18
 3-2.1 B-Spline 曲面之數學式 19
 3-2.2 由曲面座標反求控制點座標 20
 3-2.3 對任意曲面作吻合（Surface Fitting） 20
 3-3 最佳化消波翼之預測 .. 21
 3-3.1 拉凡格氏法之極小化過程 21
 3-3.2 數值計算流程 .. 24
第四章 數值模擬 .. 25
 4.1 研究基礎—應用 CFD 方法預估漁船阻力 25
 4.2 最佳消波翼的系統化研究 26
 4.2.1 消波翼的最佳設置深度 27
 4.2.2 有效干涉位置研究 28
 4.3 縱向位置最佳化 .. 30
 4.4 翼展效能最佳化研究 .. 31
 4.5 尺寸加大結合船身 .. 32
 4.6 最佳消波翼的 CFD 結果預測 34
第五章 實驗結果與討論 ... 38
 5.1 本研究船模阻力實驗流程 38
 5.2 本研究消波翼裝設過程 40
參考文獻 .. 45
摘要

在許多工程問題上常使用傳統正算方法來求解其物理量，亦就是探討將已知條件輸入系統模式來分析其輸出為何，這就是正算問題(Direct Problem)。然而在許多實際工程問題中，存在著許多物理量因為客觀條件限制或量測技術不足而無法直接計算或量測其值。因此，為了取得所需之物理量，必須利用反算法藉由其它已知的參數及物理量反求之，這就是逆向或反算問題(Inverse Problem)，而反算問題也已大量被應用於許多幾何形狀的最佳化設計，稱之為反算設計問題(Inverse Design Problem)。

就船用流力上來講一般所謂正算問題亦即已知船型來計算其壓力分佈或其阻力。而反算設計問題正好相反，亦即利用已知最佳的壓力分佈或最小的興波阻力(設計者可依設計的限制條件需求而定)進而反算設計求出最佳之船型。此篇研究中利用 FLOWTECH International AB 公司所開發的商用套裝軟體 SHIPFLOW 做為吾正算問題之依據，再配合反算設計問題中之拉凡格式法(Levenberg-Marquardt Method)來對本問題建立最佳船型之預測。

研究計畫將針對小型漁船船模進行實船性能改善之設計(研究出一減波裝置---漸波翼)，以達減少興波阻力節省能源提高船速之目的。

ABSTRACT

The direct problem in ship hydrodynamics is to analyze the flow filed around the ship. In such problems the hull form should be given. The inverse design problem in ship hydrodynamics is to estimate the unknown hull form based on the desired hydrodynamic target such as the hull pressure distribution, the wave profile or the axial wake distribution on propeller disc.

An inverse design algorithm is developed by utilizing the Levenberg-Marquardt Method (LMM) and the direct problem solver SHIPFLOW. The B-spline surface governed by small number of parameters (i.e. the control points) is introduced to describe the hull geometry in the inverse design process.

The topic of this study is to estimate the optimal shape of the foil based on the desired wake distribution. The desired wake distribution can be obtained by modifying the existing wake distribution of the parent ship. The validity of the present inverse hull design problem is justified based on both the numerical and real experiments. Results show that optimal foil form can always be obtained based on the required wake distributions.
第一章 緒論

1-1 研究背景與目的

在實際的工程問題上，常常存在許多無法藉由直接計算或量測而得之物理量，以高溫的煉鋼爐壁為例，並無法從內部測量其溫度。所以為了得到這些物理量，往往必須藉由其他可量測的資料來反求之（例如從爐壁外可量測的溫度反求其內部的高溫），這類問題稱之為逆向或反算問題（Inverse Problem）。

對於傳統船型之設計，當一新船型產生或船型因需求而改變時，為了得到最佳之壓力分佈或最小阻力，常需以試誤法去做修正，如此不僅耗時耗力且不易獲得最佳之船型。因此最佳化設計之概念之引進可克服前述所遇到之瓶頸。

此研究中吾人利用反算設計方法來從事於消波翼的最佳化設計，主要可分為兩部分：正算部分為商用套裝軟體 SHIPFLOW 以及反算設計部分為拉凡格式法（Levenberg-Marquardt Method）。在一般船用流力計算上來說，正算問題為利用已知之船型來計算出其壓力分布、阻力或是其他係數（如：壓力係數 C_p、興波阻力係數 C_w），而反算設計問題則是利用已知之條件（如：壓力分布、阻力或是其他係數）進而反算求出符合此條件之消波翼，因此只要設計者依其所所需給定已知條件，即可設計出符合設計者所需要的最佳消波翼。

在本研究中首先給定一初始船型 A，以及一最佳消波翼所需的條件，此條件可依設計者的需求而設定，在此主要針對興波阻力係數 C_w 或球倉部分波高 W_h 來探討對於船型的影響。先利用 SHIPFLOW 正算出船型 A 的船型條件（如：壓力分佈 C_p、興波係數 C_w、球倉部分的波高 W_h 等），再與最佳條件做比較，若不相異則改變船型 A 的消波翼部分，再計算出其新的消波翼條件與與最佳條件再做比對，一直反覆迭代到其兩者間的差不超過收斂值為止，則此最終消波翼即為所求之最佳消波翼。

在上述研究中對於船型的描述採用 B-Spline 曲面，它可將消波翼利用多數參數而完整的繪製出來（例如使用控制點）。籍由改變 B-Spline 曲面之控制點座標來改變消波翼曲面之座標，以達到吾所想要消波翼之改變，並配合反算設計問題中之拉凡格式法，求出一最佳消波翼符合吾設計者在設計上的需求。

1-2 文獻回顧

在過去傳統的船型設計，必須不斷地修改船型再不斷地做船模測試來求得設計者所需要的最佳船型，此試誤法不但既浪費時間也必須花費許多金錢，而且最終的結果可能得不到設計者所需要的最佳船型。在近幾年來由於電腦計算速度的快速提高以及商用套裝軟體不斷的開發，而在計算流體力學方面的商用套裝軟體更是大量被採用來模擬流場以及實際的情況，此方法不但改進了傳統船型設計方
法為人所詆病的問題，並且提供設計者一個更為精準的方法。

在使用電腦數值模擬之前，對於能否正確的描述出物件的模型，關係到模擬的結果可否完全的代表實際的情況。在 Wyatt 和 Chang【1】，Larson and Kim【2】以及 Lowe，Bloor 和 Wilson【3】等研究中對於描述最佳化設計的船型上所採用的數值方法皆有詳盡的說明。而在 Huang，Chiang 和 Chou【4】以及 Huang and Chen【5】的研究中都採用了 B-Spline 曲面方法來描述船型最佳化設計中的船型部分，此方法由於在使用上較為簡明，可以很正確的控制船型，因此吾人在考慮的結果中也採用與上述兩篇相同的船型；B-Spline surface method，應用於控制船型方面。

至於在船型最佳化的研究方面，有許多的研究都是利用數值方法來進行設計。在 Wyatt and Chang【1】以及 Goren，Helvacioglu and Inesl【6】的研究中是針對船體來進行最佳化的設計。而在 Ma and Tanaka【7】中則提到利用波阻抗（Wave Resistance）與黏性阻力（Viscous Resistance）之和為目標函數（Object Function），籍由對此目標函數做最小化來進行船型的最佳化。在 Janson and Larsson【8】的研究中則將船型設定為一曲線，籍由改變初始船型的座標而求出新船的壓力分佈，再將此壓力分配與初始船型做比較，反覆變更至二者間的差距小於一收斂值而求得最佳的船型。Masazumi，Akira and Seiko【9】的研究中則在於船型最佳化的過程加上一定限制條件（如船長、吃水、平台船，船底弧度等），利用計算出波阻抗並將其最小化以達到最佳的船型。Huang，Chiang and Chou【4】的研究中首先給定最佳船型的壓力分佈，並利用改變初期的船型，計算出其壓力分佈，將兩者間的差距設為目標函數，反覆累代至目標函數小於收斂值為止，以求得最佳的船型。而在 Huang and Chen【5】研究中則針對船體流速對船型的影響，其方法與上篇相似，只是將壓力分佈改為考慮有黏性效應的舾腳流流速。在 Saad A. Ragad【10】研究中則是應用具軸對稱法來將波阻抗最小化，以達到最佳的船型。

本文除了對於波浪的控制採用 B-Spline 曲面方法之外，在正算部分使用了與 Huang and Chen【5】中相同的套裝軟體 SHIPFLOW，藉此計算出吾所設定的限制條件（波浪係數 C_w，球鉚部分的波高 W_b 等），再搭配反算設計部分的拉凡格式法，求出一船近於限制條件的最佳消波翼。而在 Huang 等人【4, 5, 11-13】的研究中，也都已證明了拉凡格式法適用於反算設計問題。

第二章 KCS LINES 與 SHIPFLOW 軟體使用簡介

本篇研究在利用反算設計問題在於消波翼的最佳化設計之前，必須先進行一些先期的作業，這些前置作業最主要的目的在於將 3D 空間的船型轉換為數值化的座標值，也就是建立能在數值模擬中使用的模型（Model），在此是利用瑞典 KCS 公司所開發的商用套裝軟體 Tribon M1 中 Initial Design Lines 模組來針對船型建立一基模模型。建立船型模型之後，再利用轉檔程式將此船型模型轉換為 SHIPFLOW 可辨識判讀的檔案格式（Offset File）。
本人所撰写的 FORTRAN 反算設計程式作為控制波浪翼最佳化設計的重要主程式，並搭配瑞典 FLOWTECH International AB 公司所開發專門計算船用流力的套裝軟體 SHIPFLOW 為副程式，使用 SHIPFLOW 強大的計算能力作為在最佳化設計程式中的正算部分。而兩者間的銜接，除了船型的模型數據以及計算的結果相互間傳遞外，更利用 FORTRAN 77 中的 SYSTEM 指令來控制 SHIPFLOW 的執行。在本章中就針對 Tribon M1 以及 SHIPFLOW 兩套裝軟體在使用上作一詳盡的介紹。

2-1 Tribon M1 簡介

Tribon M1 的概念緣至於：將傳統的造船工業以及離岸工業（如鑽油平台）在設計與資訊系統上做一完整的整合。從最基本的初始設計（Initial Design），到聯繫船東以及船廠或是連結船廠與下游廠商的電子商務平台，甚至於提供船廠在使用系統上的後續服務以及顧問的部分，完完全全的整合在此一系統。此系統更提供了船廠設計者以及船東買方一個可以在網路上共同討論的平台，使得設計者在設計的同時可以立即依照船東的要求而做出修改。也由於此系統強大而且完整的設計功能，因此設計者在使用上也較為簡便。

整個 Tribon M1 中對於船模的建立包括了四個大模組：

（1）Tribon M1 Form

此模組提供設計者在設計船模前一些限制條件、常數的設定，設計者可以依個人需要設定如船長、船寬、吃水或是載重量等限制條件，此模組可以很快的利用本身庫存的程式，自動產生出符合這些條件的船型。

（2）Tribon M1 Lines

模組 Tribon M1 Form 中產生的船型，設計者可以在此程式模組中個別的針對某一區域進行整順修改，以達到完全符合個人的需求。另一方面設計者也可以利用原有的一些船型檔案（如：Lines 線圖、Offset Data 等），在此模組中直接建立船型，並進行整順修改的工作，而在此研究中吾即是利用此法來建立船型。而整順的工作完成後的船型，可以利用模組中的 Export 功能，將圖形直接輸出為其他檔案。此模組在下一節中會有詳盡的使用說明。

（3）Tribon M1 Surface

此模組提供設計者在完成基礎的設計（Tribon M1 Form 以及 Tribon M1 Lines）後，可以很迅速確實地利用本身資料庫的資料，並匹配設計者的需求，
塑造出除了船型之外的其他表面結構物，例如：船艙門、通風口、錨機組件等。

(4) Tribon M1 Compartment。

此模組提供了設計者在船型內部的艙區劃分上的功能，主要是針對一些較大艙區間的劃分為主，此艙間的劃分也提供了設計者在進行後續 Tribon M1 Calc 模組時的基本定義。

除了上述這些主要用於建立基本船型的四個模組之外，Tribon M1 Space 還提供了一部份的基礎設計（例如：艙內的横向及縱向的隔板、甲板等），Tribon M1 另外還提供了流體動力性能方面的計算模組（Tribon M1 Calc）以及分析（Tribon M1 Hydro）的模組，以上這些模組間相互使用上的關聯性如圖2-1。

圖2-1 Tribon M1 Initial Design 各模組間的關聯圖。

2-2 Tribon M1-Initial Design Lines 使用說明

在此研究中，吾利用上述的 Tribon M1 Line 模組來建立船型，以下就針對吾在使用此模組時的過程作一詳盡的說明【14,15】。

Tribon M1 Lines 係為建立 Lines Model 之工具，主要目的為線形整順，並提供初步設計快速產生船型線形及相關下游所需資料之用，因此本文主要著墨於線形整順（Lines Fairing）部份。在操作 Tribon M1 Lines 軟體時有下列三種操作途徑：

(1) 命令列（Command Line）
(2) 下拉式選單（Pulldown Menus）→對話方塊（Dialogue Box）
(3) 圖示選項（ICON）→對話方塊（Dialogue Box）

2-2.1 輸入檔的前期準備

在執行 Tribon M1 Lines 之前，必須先準備下列輸入檔：
(1) 主要尺寸檔

此檔主要的目的在於限制顯示工作圖的範圍，對建立一艘新船而言，此檔為
開放 Tribon M1 Lines 軟體的唯一必備檔。主要尺寸包括有：船名 (Ship’s Title)、
全長 (LOA)、水線長 (LBP)、船寬 (Breadth)、設計吃水 (Design Draft)、船
深 (Depth) 等資料，在軟體中則通稱為 Particular。主要尺寸的資料除了可以直接
在開放軟體時所出現的視窗上輸入外；也可以利用檔案讀取的方式，將先前所
準備的檔案讀入軟體中。而此檔案的副檔名則要為 GPF，如：Wuchiang.GPF。

（2） 線形檔

Tribon M1 Lines 中的線形檔為一 Britfair 檔，目前的 Tribon M1
Lines 僅能接受 Section 線形檔，對於 Waterline 及 Buttock 線形檔皆不能接受。而
Section 線形檔可由 Body Plan Digitize 或是利用 Offset Table 而得，在此研究中吾
兩者皆有利用，大致上以前者方法為主，細微的修改部份則參考後者方法。此線
形檔的副檔名為 BRI，如：Wuchiang.BRI。

（3） 邊界線檔

邊界線檔的建立在使用 Tribon M1 Lines 時十分重要，假使邊界線檔建立完
整，則在接下來的線形整順會更為事半功倍。而此邊界線檔中的資料可由線圖
(Lines Drawing) 上量得，或是從 Offset Table 中查得。在 Tribon M1 Lines 中常
使用的邊界線檔包括如下：

(a) Flat OF Side (FOS.DAT)
(b) Flat Of Bottom (FOB.DAT)
(c) Stem Profile (STEM.DAT)
(d) Stern Profile (STERN.DAT)
(e) Stem Radius
(f) Stem Tangent
(g) Stern Radius
(h) Stern Tangent

上述中的 (e) (f) (g) (h) 資料不易獲得，可暫時省略不用，但假使可以
取得，將使邊界線形檔更為完整。在軟體中通稱此邊界資料為 BOUNDARY，邊
界線檔的副檔名為 DAT，如：FOS.DAT。

（4） 其它檔

(a) Knuckle Line 資料檔 (DAT 檔)：使用上相當於邊界線檔，如：Transom
 Stern 等。

(b) Sheer, Camber 資料檔 (DAT 檔)：主要用於建立甲板線。

上述的檔案中，假使準備的更為詳盡周全，則利用 Tribon M1 Lines 所建立的船
型將更符合實際情形。

2.2.2 基本操作說明

操作 Tribon M1 Lines 的步驟為下列：
(1) 進入 Tribon M1 Lines 軟體
(2) 進入 Tribon M1 Lines 軟體的 Datastore

軟體建立船型的所有資料，皆會儲存於 Datastore 檔（BLI 檔）中。首次開啟
Tribon M1 Lines 軟體的 Datastore 時，先將主要尺寸檔（GPF 檔）載入
（Import）；若非首次開啟則直接開啟舊檔 Datastore（BLI 檔）即可。
（3） 設定座標單位

Tribon M1 Lines 軟體中對於 X 座標的單位分別為以下三種:

（a） Constant Distance
（b） Section No.
（c） Frame No。

因此採取何種設定座標的方式極為重要，通常採用 Constant Distance。
(4) 設定曲率顯示模式及放大倍率

Tribon M1 Lines 軟體係藉檢視曲線的曲率（Curvature），來判斷曲線的平順與否。通常將曲率顯示模式由內定的毛線（Tuft）改為曲線（Curve），較易觀察曲率。針對不同曲線之特性，可選擇適當的曲率放大倍數，以利於調整曲線的整順作業。

(5) 建立 Frame Table

是否要建立 Frame Table 則看個人實際的需求。

(6) 產生與儲存 Current Curve

Tribon M1 Lines 軟體於同一時間僅能處理一條曲線，而此時正在處理的曲線稱之為 Current Curve。有下列兩種途徑來產生曲線：

(a) GREAT 命令：依序載入邊界線檔、Knuckle 檔等。
(b) GET 命令：用於切取 Section Lines、Waterlines 以及 Buttock Lines 等。

當完成一條曲線的整順後，可執行 Accept 命令來儲存曲線，或是執行
Quit 命令放棄儲存。

(7) 載入邊界線檔

使用 CREATE 命令將先前準備的邊界線檔載入，並將載入的曲線一一整順後，執行 ACCEPT 命令儲存於 BOUNDARY 之下。

(8) 載入線形檔

同樣利用 CREATE 命令載入 Section Lines 的線形檔（如：Wuchiang.BRI），載入後的線形檔儲存於 DESIGN 之下，再利用此一資料在下列步驟中產生 Section Lines。
(9) Section Lines 逐一整順

使用 GET 命令產生 Section Lines，並利用畫面右方的工具列逐一進行整順，
一方面藉由觀察曲線曲率的變化，一方面改變曲線上各點的座標及特性
（如：切點或是折點），以達到曲線平順為止。最後將整順完的 Section Line
利用 ACCEPT 命令儲存，並以此步驟完成所有 Section Lines 為止。

(10) 切取 Waterlines

利用步驟 (9) 整順後的 Section Lines，以及先前的邊界線檔
BOUNDARY，切取 Waterlines（依設計者的需求而定），切取後的 Waterlines
則利用步驟 (9) 的方法進行整順後再行儲存。

(11) 切取 Bottock Lines

與上一步驟相同，利用 Section Lines 及 Waterlines 切取 Bottock Lines，並進
行整順步驟。
（12）反覆切取校正
重覆（9）～（11）步驟，直到 Section、Waterlines、Bottock 三平面的所有曲線點互為對應，且未偏離原始線形座標點過遠，也就是說三者間互切的結果都十分接近，而所有曲線的曲率皆為平順，此時線形整順的工作才算大功完成。
此外，除了完成上述的步驟之後，我們可以利用先前所準備的Sheer及Camber資料檔繼續建立上甲板線(Upper Deck Camber)。由於本研究中僅針對船型的Model Test為主，因此吾並沒有建立上甲板這一部份的線形。完成線形的初步建立之後，利用工具列中的EXPORT命令，將船型的線形資料以Brittfair檔的形式輸出，接著使用吾利用FROTRAN程式所撰寫的轉檔程式，轉檔為Offset檔的格式，以便於SHIPFLOW的計算。

2-3 SHIPFLOW簡介
近幾年來，有許多計算流體力學(CFD)的商用套裝軟體被應用於船體設計上，例如有SHIPFLOW、DAWSON、APID、SHALLO以及STAR-CD等，這些軟體主要利用其強大的計算能力來解決船用流力上許多複雜的計算，求得以一般計算方式所無法解決的方程式（例如：考慮黏滯效應的Navier-Stokes Eq.)。

SHIPFLOW 2.6為瑞典FLOWTECH International AB公司所開發的商用套裝軟體，是一套專為計算船用流力問題而設計的商用軟體，它所能計算的範圍包括了最基本的勢流(potential flow)問題，甚至包括黏滯流的Navier-Stokes Eq.也可計算(The Reynolds-Averaged Navier-Stokes (RANS) Solver)，除了完整的計算功能外，它更包含一個功能相當齊全的後處理程式(Post-Processor)，提供了使用者觀察計算結果的工作視窗。因此在吾研究中選擇SHIPFLOW做為吾之求得
直接解的副程式，再搭配主程式中反算問題的拉凡格式法來進行最佳化船型的預測。

SHIPFLOW 就像大部分的套裝軟體一樣，在最早版本（1991 SHIPFLOW1.0）中得功能並不強大，僅適用於一些基本的船用流力問題上，後來在不斷加入解決各項問題的功能後才形成今日的版本（1999 SHIPFLOW2.5），並在 2000 年發展出可適用於個人電腦（PC）上的 2.6 版（先前版本皆須在工作站平台上使用），使得在使用上較為方便以及在計算時間上也大為縮減。SHIPFLOW 將船體周圍的流體計算問題分為三個區域，分別為：勢流 (Potential Flow)、含有黏滯效應的邊界層 (Boundary Layer) 以及船尾艉流區 (Stern and Wake Flow-Navier-Stokes Eq.)，如圖 2-2。

![圖 2-2 SHIPFLOW 計算原理。](image)

一個完整的計算流程包括了這三個部分：首先是計算出不考慮黏滯性勢流部分，通常在此可得到像：興波阻力、波浪的形狀、俯仰的吃水變化以及壓力分佈等。接著利用此壓力分佈代入第二部分的邊界層中計算，此可以得到船體前半部分的摩擦力，再代入最後的 Navier-Stokes 區域計算出艉流的特性。在 Larsson 等人 [2] 及 Huang and Chen [5] 的研究中，對於 SHIPFLOW 的計算部分有一詳盡的介紹。

SHIPFLOW 在執行上的方式是結合船型檔 (Offset 檔) 以及命令檔 (Command File) 兩個檔案。吾給定一船型的資料以及在命令檔中設定吾所需要計算部分的指令即可，計算後的結果可以從自動產生的結果檔（如：OUTPUT 檔、FSRES 檔等）中查得吾所需要的结果，例如：興波阻力係數 (Cw)、壓力分佈 (Cp) 等，或是利用 SHIPFLOW 所搭配的後處理載入結果檔 (HDF 檔) 察看。船型的資料在上一節中已說明是利用 Tribon M1 Lines 而得到，因此在此僅針對另一命令檔在使用上做一番介紹。在命令檔中的各項指令分別代表計算不同的模組部分：

(1) **XFLOW**

主要功能在於定義一些計算船用流力上使用到的物理參數及條件，例如：船名、船長、船寬、船速、雷諾數、有無自由液面等，以及在計算上所要使用到的模組。除此之外，還可在此設定計算後所要輸出的結果檔。此一部份的指令不可省略。
（2）XMESH

此指令的功能主要將原有的船型自動產生網格，以方便後續模組 XPAN 的計算。設計者可以依照個人的需要，利用指令來設定網格的劃分，而網格劃分的方法則由內定的一些指令來設定。此一部份也不可省略。

（3）XPAN

主要功能在於計算勢流（Potential Flow）。

（4）XBOUND

主要功能在於計算邊界層（Boundary Layer）。

（5）XGRID

此指令的功能在於設定計算 XVISC 時所用的網格，若在程式中需要計算 XVISC，則要先行設定 XGRID，不可省略。XMESH 及 XGRID 通稱為前處理（Pre-Processors）。

（6）XVISC

主要功能為計算船體部分黏滯流的 Navier-Stokes Eq。

上述的這些模組皆由內定的指令進行控制，由於這些指令相當繁雜，因此不再詳加說明，可參考 FLOWTECH International AB 所提供的使用手冊（User Manual）【16】。

第三章 消波翼最佳化設計

在本章中將使用反算設計問題中之拉凡格氏法（Levenberg-Marguardt Method）對消波翼進行最佳化的預測，並以 SHIPFLOW 套裝軟體做為計算船用流力方面的直接解的依據，消波翼方面的控制則採用 B-Spline 曲面，利用此法來改變消波翼以達到最佳的消波翼。至於最佳消波翼所給定的限制條件則分別為：
（1）船體部分的波形高度（Wave height）與（2）興波阻力係數（C_w）。

3-1 直接解問題之理論

本研究中採用 SHIPFLOW 套装軟體作为吾在计算船用流力学时的直接解问题，SHIPFLOW 使用上的说明在上一章中已说明过，本章就针对吾使用 SHIPFLOW 軟體時所依據的理論基礎加以說明。

本文採用如圖 3-1 所示的卡氏座標系統（Cartesian Coordinate System）進行理論及計算分析。物理幾何模型以 o-xyz 為座標軸，其中 o-z 以重力方向為正，z=0 平面與自由液面 x-y 平面重合，而以一定速前進之船體的流體動力問題轉換為以固定且流體以船速 U_0 流向船體的問題，如圖 3-2。
圖 3-1 船型卡氏座標系統。

圖 3-2 船型物理模式。

在使用 SHIPFLOW 的模組部分，由於限制條件為波浪高度及興波阻力，因
此僅採用計算勢流（Potential Flow）部分的模組：XMESH及XPAN。在假設流體的物理性質方面為：（1）無黏性（Inviscid）（2）不可壓縮（Incompressible）（3）非旋性（Irrotational），亦即在只考慮勢流的情形下，船體以一定速U₀前進，並加入考慮一自由液面（z=0平面）。此流場中的速度勢（Velocity Potential）ϕ(x, y, z)可表示如下

\[\phi = \int_{s} \frac{\sigma(q)}{r'(p,q)} ds - U_0 \] (3-1)

其中σ(q)為在表面上ds處源點（Source）的強度，而r'(p,q)則為源點q點到計算勢流處p點的距離。

流場中流體速度可用上式的速度勢來表示：

\[\ddot{V}(x,y,z) = \nabla \phi(x,y,z) \] (3-2)

由連續方程式可知（3-1）式必滿足：

\[\nabla^2 \phi = 0 \] (3-3)

此外在船殼表面為滿足流體不可穿透邊界及船殼間有空隙之運動邊界條件（Kinematic Boundary Condition）

\[\frac{\partial \phi}{\partial n} = \phi_n = 0 \] (3-4)

其中n=(nx, ny, nz)為垂直表面的單位向量。

至於在自由液面z=ξ(x,y)上，其運動邊界條件及動力邊界條件（Dynamic Boundary Condition）則分別為：

\[\phi_x \xi_x + \phi_y \xi_y - \phi_z = 0 \] (3-5)

\[g \xi + \frac{1}{2}(\nabla \phi \cdot \nabla \phi - U^2) = 0 \] (3-6)

除此之外，在無窮遠遠離船體的速度勢也必定趨近於入流條件

\[\nabla \phi \to (-U_0,0,0) \text{ at } r' \to \infty \] (3-7)
根據上式，即可求得此流場中之速度變其流程，甚至於流體的壓力，此次一複雜計算過程全由 SHIPFLOW 軟體執行，從其最後結果中可獲得吾所需要各項資料，如壓力分佈、興波阻力係數、波浪高度等。再以此直接解的結果作為反算設計問題中的依據。

3-2 B-Spline 曲面

在數值模擬的運算中對於曲面的描述相當重視，曲面描述的好壞（能否完全表達實際的形狀），影響到結果的好壞以及可信度。曲面的描述常因實際問題的需要有許多不同的方法，如：Bezier 法、B-Spline 曲面等，對於造船設計而言，船型的描述最常採用的方法為 B-Spline 曲面，因為其富有彈性（利用少數的控制點），容易控制的優點。B-Spline 曲面是利用少數控制點座標來描述一複雜的曲面，當吾欲改變曲面的形狀時，僅需改變控制點的座標即可，如圖 3-3a–d 所示。

【4,17】。

圖 3-3 改變控制點座標對曲面之影響。

由於拉凡格氏法為一參數預測法，因此此法提供了本研究在最佳化船型預測上相當大的方便，假使將所有的曲面座標皆設為預測的參數，則計算將變得相當龐大。而如果將控制點座標視為吾預測參數，則只要對此控制點座標做預測，即
相當於對曲面形狀做一最佳化預測，當然其前提必須在控制點能完整的描述曲面形狀之下，此預測法才完全可行。

3-2.1 B-Spline 曲面之數學式

B-Spline 曲面的數學式定義如下：

\[Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} N_{i,k}(u) M_{j,l}(w) \quad 2 \leq k \leq n + 1; 2 \leq l \leq m + 1 \] (3.8)

其中：

\(Q(u, w) \)：曲面上之點座標

\(B_{i,j} \)：控制點之座標

\(u, w \)：描述曲面之二維曲線座標

\(n + 1 \)：u 方向之控制點數

\(m + 1 \)：w 方向之控制點數

\(N_{i,k}(u) \)：u 方向階數（Order）k 之基底函數

\(M_{j,l}(w) \)：w 方向階數（Order）l 之基底函數

基底函數之定義如下：

\[N_{i,1} = \begin{cases} 1 & \text{if } x_i \leq u < x_{i+1} \\ 0 & \text{otherwise} \end{cases} \]

\[N_{i,k}(u) = \frac{(u - x_i)N_{i,k-1}(u) + (x_{i+k} - u)N_{i+1,k-1}(u)}{x_{i+k-1} - x_i} \] (3.9a)

\(x_i \)：u 方向之節向量（Knot Vector）[X]。

\[M_{j,1} = \begin{cases} 1 & \text{if } y_j \leq w < y_{j+1} \\ 0 & \text{otherwise} \end{cases} \]

\[M_{j,l}(w) = \frac{(w - y_j)M_{j,l-1}(w) + (y_{j+1} - w)M_{j+1,l-1}(w)}{y_{j+1} - y_j} \] (3.9b)

\(y_j \)：w 方向之節向量（Knot Vector）[Y]。

利用 B-Spline 描述一曲面，有許多優點，我們可以選擇不同的階數（Order），不同的節向量（Knot Vector），或是改變少數的控制點座標，以得到所希望的曲面。
3-2.2 由曲面座標反求控制點座標

反算問題的拉凡格法為一種參數預測法，藉由對參數（曲面座標或控制點座標）的修正，而求得所希望預測的曲面形狀。由於 B-Spline 曲面的採用，因此我們僅需要對控制點作修正，就相當於整個消波翼做修正，而不需要將所有船型座標均做為參數進行修正。通常對一已知的船型，是無法得知其控制點的座標，而必須利用此消波翼反求出其控制點座標。在此為簡化問題，吾將所欲控制的消波翼曲面視為一 Open-Uniform 形式的 B-Spline 曲面，然後反求其控制點，至於控制點的數目要為多少，則可依據曲面複雜的程度而有所不同，通常愈複雜，控制點數愈多，吾在此採用 11x11 點。

利用一已知消波翼反求其控制點的過程如下：
首先將 (3-8) 式簡化為

$$[Q(u,w)] = [N(u,w)M(u,w)][B]$$ \hspace{1cm} (3-10)

其中：

$[Q(u,w)]$：曲面座標矩陣

$[B]$：控制點座標矩陣

$[N(u,w)M(u,w)]$：基底函數矩陣

若 $[Q]$ 為已知，欲求 $[B]$，可利用解反矩陣求得控制點座標如下

$$[B] = [\{NM\}^T\{NM\}]^{-1}[\{NM\}]^T [Q]$$ \hspace{1cm} (3-11)

而 (3-11) 式中之 u, w 可由下式求得：

$$u_1 = 0 \quad u_{\max} = \frac{\sum_{g=2}^{l} |Q_{g,s} - Q_{g-l,s}|}{\sum_{g=2}^{l} |Q_{g,s} - Q_{g-l,s}|}$$ \hspace{1cm} (3-12a)

$$w_1 = 0 \quad w_{\max} = \frac{\sum_{g=2}^{l} |Q_{r,g} - Q_{r,g-l}|}{\sum_{g=2}^{l} |Q_{r,g} - Q_{r,g-l}|}$$ \hspace{1cm} (3-12b)

其中 u_{\max}, w_{\max} 分別為 $[X]$ 與 $[Y]$ 中之最大值。

3-2.3 對任意曲面作吻合（Surface Fitting）

B-Spline 曲面在使用上相當具有彈性，可依設計者不同的需求，得到各種不
同形式的 B-Spline 曲面，如 Open-Uniform、Nonuniform、Periodic 及 Rational 等 B-Spline 曲面。但我們在面對一未知其形式的 B-Spline 曲面時，則利用 3-2.2 節中的方法反求其控制點可能會與原來的控制點不同，而反求的控制點所形成的曲面，亦會與原曲面不完全相同。由此可知，選擇控制點的數目關係到能否完全吻合原曲面。

3.3 最佳消波翼之預測

由上一節中可知，若以足夠的控制點數對曲面作吻合，即可正確的描述原曲面，並且可以利用控制點座標來控制曲面之形狀。本章在消波翼最佳化的研究中，我們將控制點座標視為欲預測之參數，當改變控制點座標修正時，亦即對消波翼曲面之形狀做修正。此外為了將問題簡化，僅以控制點 XYZ 座標中的 Y 座標作為預測參數。以下將詳述拉凡格氏法之極小化目標函數過程及最佳消波翼預測之計算流程。

3.3.1 拉凡格氏法之極小化過程

依據最佳化控制之概念，定義一目標函數 \(J \)，並對此目標函數做最小化處理，其數學式定義如下:

\[
J[\Theta(B)]=[\hat{C}_w(\hat{B}_{yj})-C_w]^2 \quad j=1 \text{ to } k \quad (3-13)
\]

其中

“^” 代表預測之值，且 \(\Theta(B) \) 表示以控制點座標 B 所產生之消波翼曲面，

\(B=(B_X, \hat{B}_{yj}, B_Z) \) 表示控制點座標， \(\hat{B}_{yj} \) 表示 1 到 k 個控制點的 Y 座標。

\(C_w \) 表示所欲達成的興波阻力係數，而 \(\hat{C}_w \) 則為將船型控制點座標 B 代入直接解問題 SHIPFLOW 中所求得之預估興波阻力係數，藉由此 B 值做一微小的修正，吾可找出一新消波翼其興波阻力係數 \(\hat{C}_w \) 遠近吾所希望的最佳的 \(C_w \)，而使目標函數 J 達到最佳小化，此即最佳化控制的概念。但在此研究中，目標函數中

\(\hat{C}_w \) 最終僅能趨近於 \(C_w \)，因為若要完全逼近於欲達到的 \(C_w \)，所預測得的新消波翼在實際上可能不存在。因此，可僅暫時假定目標為 \(C_w \)，利用將目標函數極小化的過程，使 \(\hat{C}_w \) 縮小而趨近所希望達到之值，藉此求得一興波阻力係數較小的消波翼。

由於（3-13）式中計算所得之興波阻力係數 \(\hat{C}_w \) 受到船型控制點座標參數 B 的影響，所以可以將（3-13）式對欲預測的參數 B 微分後，而達到（3-13）式之極小化，其表示式如下
\[
\frac{\partial I}{\partial B_{Yj}} = \left[\frac{\partial \hat{C}_w}{\partial B_{Yj}} \right] \left[\hat{C}_w - C_w \right] = 0 \quad j = 1 \text{ to } k
\] (3-14)

其中 \(j = 1 \text{ to } k\) 表示 \(k\) 個預測參數 \(\hat{B}_Y\).

由於上式 (3-14) 為一非線性系統，所以必須將 \(\hat{C}_w(\hat{B}_Y)\) 做泰勒級數展開並忽略其高次項，便可得到線性之方程式。接著，藉由加入一幫助收斂速度的參數 \(\mu^n\)，吾借由拉凡格氏法來解決此最佳化的反算設計問題，在方法上包含了牛頓法 (Newton's Method) 和急遽遞減法 (Steepest Descent Method)，其數學式如下：

\[(F + \mu^n I) \cdot B_Y = D\] (3-15)

其中

\[F = \Psi^T \Psi\] (3-16a)

\[D = \Psi^T \Delta\] (3-16b)

\[\Delta B = B^{n+1} - B^n\] (3-16c)

上式中的上標 "n" 表示疊代次數，上標 "T" 表轉置矩陣 (Transport Matrix)，I 表單位矩陣，而 \(\Psi\) 表示 Jacobian 矩陣，其 Jacobian 矩陣定義如下：

\[\Psi = \frac{\partial C_w}{\partial B_Y}^T\] (3-17)

依據上述的一些定義，吾可將 (3-15) 式改寫成下列的形式

\[B_Y^{n+1} = B_Y^n + (\Psi^T \Psi + \mu^n I)^{-1} \Psi^T (\hat{C}_w - C_w)\] (3-18)

在 (3-18) 式中，\(\mu\)之選定也非常的重要，其關係到計算時的收斂性以及收斂次數的多少。基本上，\(\mu\)採用一正參數，當\(\mu\)為零時，方程式 (3-18) 為牛頓法 (Newton's Method) 的數學型式；而當\(\mu\)趨近於無窮大時，(3-18) 式就變成逐遞遞減法 (Steepest Descent Method) 之型式。因此，为了在一開始加快收斂的速度，以及保證計算過程中不會出現發散的結果，本程式中一開始採用急遽遞減法 (Steepest Descent Method)，也就是選擇一個非常大的 \(\mu\) 值。當較趨近於正解之後，由於急遽遞減法速度會變的很慢，因此此時將 \(\mu\) 值漸漸縮小，當 \(\mu\) 值最後為零時，便為牛頓法 (Newton's Method)，藉此逼近求得反算問題的解。

為此，必須對 \(\mu\) 值做一最佳化的選定，其方法在一開始時採用急遽遞減法，以確保計算不至於發散，當解趨近於正解時，則改採用牛頓法逼近求解，此選擇 \(\mu\) 值的方式，可以防止在計算過程中出現發散或是跳動的現象。其步驟如下：
1. 令 $v > 1$。
2. 令 μ^{n-1} 表示 μ 在前一次迭代时所使用之值，且 $\mu^0 = 10^4$。
3. 計算出 $J(\mu^{n-1})$ 及 $J(\mu^{n-1}/v)$。
4. 如果 $J(\mu^{n-1}/v) \leq J(\mu^{n-1})$，令 $\mu^n = \mu^{n-1}/v$。
5. 如果 $J(\mu^{n-1}/v) > J(\mu^{n-1})$ 且 $J(\mu^{n-1}) \leq J(\mu^n)$，令 $\mu^n = \mu^{n-1}$。
6. 如果 $J(\mu^{n-1}/v) > J(\mu^n)$ 且 $J(\mu^{n-1}) > J(\mu^n)$，則藉由乘以 v 以增
加 μ 值，直到對於一極小之 η 使得 $J(\mu^{n-1}/v^\eta) \leq J(\mu^n)$，令

$$
\mu^n = \mu^{n-1}/v^n.
$$
7. 藉由步驟 4~6 找出一適當之 μ^n 值，再反覆執行步驟 3~7，直
到目標函數 J 值達到最小化。

另外，在執行拉凡格氏法求解此反算設計問題前，需要假設一適當的起始猜
值（Initial Guess）代入 (3-18) 式中代入之，此起始猜值為一消波翼的曲面座標。

在本研究中除了利用興波阻力係數 C_W 作為目標函數之外，由於興波阻力係
數與消波翼部份的波浪高度有一絕對關係，通常當縮波高度愈小時，興波阻力係
數也跟著變小，因此也可另外選擇以船體部分的波浪形狀（Wave Pattern）的高
度（Wave Height）作為目標函數中的限制條件。由於在此主要為降低興波阻力
係數，因此只針對船體部分的波浪高度做預測，而不採集全船長的波浪高度。而
在 (3-13) 式中目標函數的數學式則變更如下：

$$
J[\Theta(B)] = \sum_{i=1}^{L} [W_{hi}(B_{yi}) - W_{hi}]^2, \quad j = 1 \text{ to } k \quad (3-19)
$$

其中“$^\text{th}$”代表預測之值，各項符號的定義與 (3-13) 式中相同。W_{hi} 表示所欲
達成的波浪高度，而 \dot{W}_{hi} 則為將消波翼控制點座標 B 代入直接解問題
SHIPFLOW 中所求得預估的波浪高度，而 $i = 1 \text{ to } L$ 表示所截取船體部分波浪高
度的數值 W_{hi} 共 L 個。

至於 (3-14) 式的微分式則為

$$
\frac{\partial J}{\partial B_{yi}} = \sum_{i=1}^{L} \left[\frac{\partial \dot{W}_{hi}}{\partial B_{yi}} \right] [\dot{W}_{hi} - W_{hi}] = 0, \quad j = 1 \text{ to } k \quad (3-20)
$$

與之前利用 C_W 作為目標函數的方式一樣，藉著對控制點座標 B 做一微小的
修正，而使得縮波高度 \dot{W}_{hi} 逼近於所希望達到的 W_{hi}，以達到消波翼的最佳化，
除了方程式 (3-19) 及 (3-20) 之外，其利用拉凡格氏法極小化的過程皆與之前
相同。
3.3.2 數值計算流程

依據前面之說明，吾將其撰寫成 Fortran 程式，作為數值運算之主體架構，並結合解析解解問題的 SHIPFLOW 軟體為其副程式，本研究中利用拉凡格氏法與 SHIPFLOW 軟體預測最佳消波翼之設計的計算流程歸納如下

1、首先以原始船型，利用 SHIPFLOW 軟體執行直接解程式計算原始船型的興波力係數 C_{wo}（或為繪波高度 \textit{W}_{hoi}），並將此 C_{wo}（或 \textit{W}_{hoi}）值乘上一 m 值（m < 1）藉此縮小，作為最佳的興波阻力係數 C_{w}（或繪波高度 \textit{W}_{hi}）。

2、以上一步驟中的原始船型作為預測的起始船型，首先利用 B-Spline 曲面中的 (3-11) 式反求出起始船的消波翼的控制點座標，以此控制點 Y 座標作為吾預測的參數 Y_{g}。

3、將此初始預值的控制點 B 座標利用 SHIPFLOW 求出其直接解，以求得此起始船型所預估的 C_{w}（或 \textit{W}_{hi}）。

4、依題 (3-17) 式建立一 Jacobian 矩陣。

5、接著經由 (3-18) 式計算出新的控制點 Y 座標 Y_{g} 值。

6、並利用拉凡格氏法之極小化過程反覆疊代，直到目標函數，滿足收斂條件。此收斂條件如下

 （1）以興波阻力係數 C_{w} 為目標函數：

 \[J[\Theta(B)] = [C_{w}(B_{yj}) - C_{w}]^2 \leq \varepsilon, j=1 \text{ to } k \], \varepsilon 為一微小值

 （2）以繪波高度 \textit{W}_{hi} 為目標函數：

 \[J[\Theta(B)] = \sum_{i=1}^{L} [\textit{W}_{hi}(B_{yj}) - \textit{W}_{hi}]^2 \leq \varepsilon, j=1 \text{ to } k \], \varepsilon 為一微小值

在此極小化過程中，目標函數會逐漸縮小，但若要達到滿足收斂條件，可能消波翼在實際上不存在，或是最終所得到的消波翼的形狀可能會很奇怪而與實際設計不符。因此可利用此極小化的過程，先假定疊代的次數一定，使得所預測較高值的 C_{w}（或 \textit{W}_{hi}）往最佳限制條件為較低值的 C_{w}（或 \textit{W}_{hi}）接近後，藉此得到一興波阻力係數（或繪波高度）較小的船型。

7、將最後所求得之控制點座標 B 代入 (3-10) 式，求得消波翼曲面之座標，將所求得的消波翼部分加上原船的船體部份（Mainhull 及 Fornthull）即為吾所預測的最佳消波翼。
第四章 數值模擬

4.1 研究基礎—應用 CFD 方法預估漁船阻力

水面船舶之總阻力可概分成垂直船殼表面之剩餘阻力與船殼切線方向之摩擦阻力兩大類。其中剩餘阻力又可細分為興波阻力與黏性壓差阻力。故船舶之總阻力寫成公式為：

\[R_T = R_w + R_{vp} + R_f \]

在漁船工程研究上常以為 \(\frac{1}{2} \rho \times S \times V^2 \) 做分母對上式做無因次化而得阻力係數：

\[C_T = C_w + C_{vp} + C_f \]

其中 \(C_f \) 為平板摩擦阻力係數，通常按國際拖航水槽會議(ITTC)建議，由下列公式得

\[C_f = \frac{0.075}{(\log Rn - 2)^2} \]

雷諾數 \(Rn = \frac{V \times L}{v} \)

本案 \(L \) 為垂線間船長 \(LBP=26.126 \text{m} \)，比例尺 \(1:10 \) 的船模則為 \(2.6126 \text{m} \)。CFD 分析時動粘滯係數則取 \(15 \degree \) 萬米的標準值 \(v = 1.13899 \times 10^{-6} \text{ m}^2/\text{sec} \)

消波翼設計目標船速為實際航行時的常用 7.99kts，換算為公制速度為 4.11 m/sec，依 Froude 相似律對應的模型船速則為 1.30 m/sec，代入前述公式就可以求得摩擦阻力係數。

至於興波阻力係數 \(C_w \) 則有賴 CFD 分析獲得。本研究中 CFD 程式採用瑞典國家水槽的子公司 FLOWTWCH 公司所開發的 SHIPFLOW 程式中的勢流程式模組 XPAN。

總阻力係數最後剩下的一項黏性壓差阻力則可用形狀因子 \(K \) 乘上平板摩擦阻力係數 \(C_f \) 代替，因此總阻力係數可寫成

\[C_T = C_w + (1 + K) \times C_f \]

由於本研究所擬開發的消波翼裝置在船側附近區域、依據船形可分原理，該裝置對黏性壓差阻力最有關係的船型流場幾乎沒有影響，因此消波翼對全船的黏性壓差阻力可略去不計，加上本案研究船隻方塊係數很小 \(C_B = 0.43 \)，形狀因子 \(K \) 不大，則應用 CFD 方法預估漁船總阻力係數可簡化為

\[C_T \approx C_w + C_f \]

如果船舶加上消波翼，由於 CFD 採用的勢流理論難以計算消波翼對船舶壓力場與波浪的交互作用，3 维 Lift body 的小板法亦會有 Induced drag，但勢流理論沒有預測翼形表面切線方向之摩擦阻力與小攻角的形狀阻力，因此我們需要修正此一附加物阻力，不然所設計出之消波翼理論上雖會大幅降低漁船的興波阻
力，但卻可能因為消波翼過大的摩擦表面積產生過多的摩擦阻力而抵銷甚或對總阻力成反效果。
對於消波翼的附著物阻力在小攻角時可以用下列公式修正:

\[R_{F_{-}foil} = \frac{1}{2} \times \rho \times A_{foil} \times V^2 \times C_{DO} \]

\[C_{DO} = 2.5 \times C_{F_{-}foil} \]

此處 \(C_{F_{-}foil} \) 為消波翼 local Reynold number 的摩擦阻力係數，\(A_{foil} \) 為消波翼的

project area。所以裝有消波翼的總阻力表為:

\[R_{T} = R_{w} + R_{F} + R_{F_{-}foil} \]

此外，CFD 初步分析後發現漁船原始設計因為舷側有明顯的 sponson 滿

載吃水(2.585m)時的阻力很大，linear 與 non-linear wave making 程式結果相差

多，船舷側形狀加上船艙沒水過深導致 non-linear 程式不易收斂。為排除本案船

形的限制，以便確實表現出消波翼的功效，因此本研究將設計吃水改成 1.8 m(遠

離 sponson 與減少船艙沒水)，做為設計減阻裝置與試驗驗證的基礎。

4.2 最佳消波翼的系統化研究

本研究選擇阻力性能優秀的 NACA0015 的作爲消波翼研究的基礎翼形截

面，以系統化程序配合 CFD 工具逐步分析進而得出最佳化的消波翼，流程如下:

```
NACA0015

消波翼的最佳沒水深度

有效干涉位置研究

縱向位置最佳化

翼展效能最佳化研究

尺寸加大結合船身

最佳消波翼
```
4.2.1 消波翼的最佳沒水深度

由於 NACA0015 之厚度除弦長(t/C)比值僅 0.15，雖然阻力小但升力亦小，
且在水下作水平運動時對水的擾動亦有限，擾動小意味著能與船體交互作用產
生有效干涉消除首波的貢獻也有限，因此要加大升力與增強首要增加 t/C 的比
值，即厚度方向加厚一倍。

接著將此變厚的翼形以水平旋轉 5 度的攻角置於水下以非線性興波程式模
擬分析其於水下 0.45 m、0.6 m、0.9 m、1.2 m(由 nose point 到水面之距離)之興
波情形與升力、阻力等流體動力性能。接著再加大水平攻角到 10 度，分析 4 種
相同吃水的流體動力性能。圖 4-1 為消波翼在水面下等速前進時之 4 種沒水深
度、2 種攻角及其所產生水面興波情形。水深太深時(0.9 m 與 1.2 m)幾乎對水面
沒有明顯興波。因此水翼應該置於水下 0.45 m ~ 0.6 m 範圍內。

NACA0012 V=2 hydrofoil, Fn=0.2646
Solid: inclined angle=5.0 / Dashed: inclined angle =10

圖 4-1 NACA0015 消波翼在水面下等速前進時之位置、角度及其所產生水面興波
情形

進一步檢視升力、阻力等流體動力性能時可以發現，水翼沒水深度為 0.6 m
與傾斜 5 度攻角時的升阻比較佳，如圖 4-2 所示。
圖 4-2 消波翼在 5 度與 10 度攻角時 4 種水深之升阻比

4.2.2 有效干涉位置研究

將消波翼置於船艙，進行 CFD 分析，得出阻力性能資料，後處理繪出船艙區域的流線與壓力場，移動消波翼到新位置，進行 CFD 分析，再仔細觀察比較流線與壓力場的變化，得到有效干涉位置移動方向的啟發，重覆前述步驟，直到找到有效干涉的位置。圖 4-3 為消波翼的 6 種安裝位置變化，圖 4-4 為不同消波翼位置所造成船艙部流線、動壓分布的情形，可以發現消波翼置於船艙前方時方能產生有效交互作用減小船體波的趨勢。

再將消波翼向前移，終於獲致能夠減低興波阻力與總阻力正面效果的翼形。圖 4-5 顯示興波阻力係數與船模尺度總阻力消長的情形。
圖 4-3 消波翼的6種安裝位置變化

圖 4-4 不同消波翼位置所造成船艏部流線、動壓分布的情形
圖 4-5 各種不同消波翼位置的興波阻力係數與船模尺度總阻力消長的情形

4.3 縱向位置最佳化

在前述的研究中雖然發現到消波翼置於船艙前方時方能產生有效交互作用減小船艙波的趨勢，但是究竟在船艙多前方才是消波翼最有利干涉的位置？因此我們通過一系列調整消波翼的縱向位置來找最佳干涉點。首先從消波翼 Nose point 距船艙 FP 前方 0.1 m 開始每 0.2 m 間隔向前移動至 0.9 m 消波翼轉為負效果為止，發現 FP 前方 0.3 ~ 0.5 m 的範圍最有效，因此在 FP 前方 0.4 m 位置再新增一探索點，將興波阻力係數與總阻力消長結果繪於圖 4-6，可知消波翼前緣 nose point 裝在船艙 FP 前方 0.4m 減阻最有效的位置。
圖 4-6 各種不同消波翼位置的興波阻力係數與船模尺度總阻力消長的情形

4.4 翼展效能最佳化研究

確定消波翼最佳縱向位置之後，緊接著探索翼展的效應。如圖 4-7 所示，將消波翼翼展以 0.3 m 為間隔從單弦 0.3 m 變化到 2.1 m，將興波阻力係數與船模尺度總阻力減少的百分比情形作於圖 8，可以發現雖然翼展超過 1.5 m 以上時，翼展越寬興波阻力係數越小，但其減少的趨勢已變和緩(曲線漸漸變平)，但翼展浸水表面積線性變大，增加了摩擦阻力進而使得總阻力曲線向上反曲，因此推定單弦長 1.5 m 的翼展(即全寬 3.0 m 翼展)為最適化的消波翼翼展。
圖 4-7 消波翼翼展以 0.3 m 間隔從單弦 0.3 m 變化到 2.1 m 的上視圖 (因為船形左右對稱，故只畫左舷單側)

Foil02A's wing span variant study for Cw & Rtm reduced ratio

圖 4-8 消波翼翼展 1.5 m 時總阻力最低

4.5 尺寸加大結合船身

經由前述系統化的研究，已可找到理想的消波翼，但此時消波翼是懸在船艙
之前，未與船身相連接，船舶如欲裝置此種消波翼，需要在船柱裝置支柱以連接此消波翼，考慮船舶航行時消波翼之受力與船舶在波浪中運動所遭遇之作用力，需要相當強之中央支柱，甚或左右兩舷的一對支柱，不但成本昂貴且支柱本身亦會產生額外的附屬物阻力，因此最妥善的方式就是將消波翼尺寸加大與船身結合在一起，經討論船身細部形狀，發現翼長與翼截面形狀等比例加大 1.5 倍時有與船體有效結合。

為瞭解消波翼等比例加大 1.5 倍時的消波性能，經以 CFD 分析該消波翼在水面下等速前進時與產生之主波谷位置與原尺寸翼形的主波谷位置幾乎相當(為維持主波谷的產生位置，等比例加大翼形的攻角從 5 度略微調整到 6 度)，應該能維持前述系統化研究所找到最佳干渉效果的位置，詳見圖 4-9。其次，加大的翼形尺寸，雖然會增加摩擦阻力與誘導阻力，但產生的升力亦是顯著增加，由圖 4-2 知升力比約接近 15，升力明顯比阻力增加來得快，對降低阻力性能應有正面貢獻。

此一能與船身妥善結合的消波翼即為本文透過系統化參數研究與 CFD 分析所研發的最佳消波翼(Optimal foil)。在比例尺 1:10 的 98 吋漁船模型上消波翼的尺寸為：翼弦長 15 cm、翼展 30 cm，最大厚度 3.6 cm，截面形狀的 offset 列於表 4-1。

模型消波翼的安裝位置為翼形前緣(Foil nose point)縱向 267.2 cm from AP(舵桿中心)，高度 13.5 cm from BL，以 nose point 為軸心水平向下傾斜 6 度，安裝側視圖詳見圖 4-10，3D 立體圖則請參見圖 4-11。

![NACA8012 hydrofoil 2 size study, Re=0.2646, U=5.0, T=0.6](image)

![翼形表面壓力分佈](image)

圖 4-9 原尺寸翼形(上方)與等比例加大 1.5 倍翼形(下方)之翼表面壓力分佈與波高分佈
4.6 最佳消波翼的 CFD 結果預測

漁船船形受限於第一章所述特殊船體構型的因素，非線性(non-linear)與波的程式不易收玫，因此翼形的最佳化過程均以線性化(linear)與波程式為分析主力，翼形最佳化過程中各階段的主減阻結果以百分比的長條圖方式於圖 4-12；最右方改善幅度最大的為最佳化消波翼形，線性與波阻力係數 Cw↓49.7%，船模尺度總阻力 Rtm↓13%。

為確保消波翼的減阻效果，特別以非線性化與波程式(非線性化重載 15 次)雙重分析消波翼系統化研究各階段的主要減阻結果，以百分比的長條圖方式於圖 4-13，最右方改善幅度最大的為最佳化消波翼形，非線性與波阻力係數 Cw↓
13.7%，船模尺度總阻力 R_{tm} 下降4.26%。依CFD使用經驗判斷，線性化興波預測結果因為理論模型假設之故，沒有考慮到水線以上船殼壓力的變化，有時會有改善幅度過於樂觀之虞，但至少非線性興波模組亦指出船模尺度的總阻力性能至少有4%的改善空間。

此外，圖4-14為裝置最佳化消波翼（下半船）與原始船形（上半船）之線性化興波之波高分佈圖與此兩型船側的wave profile。波高分佈圖顯示最佳消波翼船的水面波高較和緩（等高線較少），船側wave profile則可明顯看出最佳消波翼船的艏波峰高度降低許多。

![The improvement of Cw (linear) and Resistance Rtm](image)

圖4-12以線性化CFD分析模組預估各型消波翼改善興波阻力係數與船模尺度總阻力的百分比，最右方改善幅度最大的為最佳化消波翼形。
圖4-13 以非線性化CFD分折模組預估各型消波翼改善與波阻力係數與船模尺度
總阻力的百分比，最右方改善幅度最大的為最佳化消波翼形

圖4-14 大圖為裝置最佳化消波翼(下半船)與原始船形(上半船)之線性化與波之
波高分佈圖，左下角小圖為兩型船側wave profile，綠色線為最佳化消波翼
船的wave profile，紅色則為原型船

綜上所論，不論線性化或非線性化程式皆預測本案研發的最佳化消波翼為翼
形減阻最大化設計，改善船模尺度的總阻力幅度約在4~13%程度，如果推估
到實船，由於雷諾數變大，摩擦阻力係數下降，與波阻力佔總阻力的成分自然變
大，消波翼改善與波的效果會被放大成改善實船尺度總阻力幅度約在6~20%之
間，則本案所研發的消波翼可以直接加裝在現成漁船上，就十分具有商業化的應用價值。

表 4-1 比例尺 1:10 最佳消波翼截面的 offset (單位：mm)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.0000</td>
<td>0.0000</td>
<td>48.0000</td>
<td>17.9784</td>
</tr>
<tr>
<td>147.0000</td>
<td>1.2096</td>
<td>45.0000</td>
<td>18.0051</td>
</tr>
<tr>
<td>144.0000</td>
<td>2.0211</td>
<td>42.0000</td>
<td>17.9778</td>
</tr>
<tr>
<td>141.0000</td>
<td>2.8134</td>
<td>39.0000</td>
<td>17.8911</td>
</tr>
<tr>
<td>138.0000</td>
<td>3.5874</td>
<td>36.0000</td>
<td>17.7393</td>
</tr>
<tr>
<td>135.0000</td>
<td>4.3431</td>
<td>33.0000</td>
<td>17.5158</td>
</tr>
<tr>
<td>132.0000</td>
<td>5.0817</td>
<td>30.0000</td>
<td>17.2125</td>
</tr>
<tr>
<td>129.0000</td>
<td>5.8032</td>
<td>27.0000</td>
<td>16.8198</td>
</tr>
<tr>
<td>126.0000</td>
<td>6.5082</td>
<td>24.0000</td>
<td>16.3254</td>
</tr>
<tr>
<td>123.0000</td>
<td>7.1967</td>
<td>21.0000</td>
<td>15.7140</td>
</tr>
<tr>
<td>120.0000</td>
<td>7.8693</td>
<td>18.0000</td>
<td>14.9646</td>
</tr>
<tr>
<td>117.0000</td>
<td>8.5260</td>
<td>15.0000</td>
<td>14.0484</td>
</tr>
<tr>
<td>114.0000</td>
<td>9.1665</td>
<td>12.0000</td>
<td>12.9216</td>
</tr>
<tr>
<td>111.0000</td>
<td>9.7911</td>
<td>9.0000</td>
<td>11.5128</td>
</tr>
<tr>
<td>108.0000</td>
<td>10.3998</td>
<td>6.0000</td>
<td>9.6831</td>
</tr>
<tr>
<td>105.0000</td>
<td>10.9917</td>
<td>3.0000</td>
<td>7.0794</td>
</tr>
<tr>
<td>102.0000</td>
<td>11.5671</td>
<td>2.2500</td>
<td>6.1911</td>
</tr>
<tr>
<td>99.0000</td>
<td>12.1251</td>
<td>1.5000</td>
<td>5.1111</td>
</tr>
<tr>
<td>96.0000</td>
<td>12.6654</td>
<td>0.7500</td>
<td>3.6639</td>
</tr>
<tr>
<td>93.0000</td>
<td>13.1874</td>
<td>0.2115</td>
<td>1.9080</td>
</tr>
<tr>
<td>90.0000</td>
<td>13.6902</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>87.0000</td>
<td>14.1729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84.0000</td>
<td>14.6346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.0000</td>
<td>15.0744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.0000</td>
<td>15.4905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.0000</td>
<td>15.8820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.0000</td>
<td>16.2474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.0000</td>
<td>16.5846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.0000</td>
<td>16.8921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.0000</td>
<td>17.1675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.0000</td>
<td>17.4090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.0000</td>
<td>17.6136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.0000</td>
<td>17.7789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.0000</td>
<td>17.9016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第五章 實驗結果與討論

本研究船模阻力實驗準備器材如下:
(1) 船模 (2) 三塊實心木 (3) 鑽孔機 (4) 工具箱 (包含活動扳手、螺絲、螺帽.....等)
(5) 阻力量測儀 (Force gage) (6) 攝影機 (7) 兩台筆記型電腦 (7) 磅码 (8) Lab
View 以及 Tv plus 套裝軟體 (9) 潛航器拖曳車 (10) 夾船器 (11) 空壓機 (12) 六分力計

圖 5-1 阻力量測儀

圖 5-2 潛航器拖曳車控制機台

圖 5-3 潛航器拖曳車

圖 5-4 空壓機

5.1 本研究船模阻力實驗流程如下:
(a) 鑽孔以及安裝實心木於船上，並測量好放夾船器的位置。
(b) 找出船軸並測量船模的重心。
(c) 從船模本身的重量以及吃水去選定適合的阻力測量儀。
(d) 阻力測量儀的校正 (電壓與公斤的換算)。
(e) 潛航器拖曳車試航測試以及夾船裝置組位置的校正。
(f) 空壓機管線架設(老舊的線路要立即更換，以免有破裂漏氣之可能)。
(g) 用吊車移動船模至拖航水槽內進行吃水線壓載校正。
(h) 將船內砂碼位置標記。
(i) 船模安裝於潛航器拖曳車中央的夾船裝置組，並詳細檢查船模
與潛航器拖曳車是否位置有左右對稱。
(j) 進行攝影機及探照燈的安裝(調整攝影機位置及仰角並且選擇探照燈適合的
位置，避免水面反光而無法攝影船體的水面波紋)。
(k) 潛航器拖曳車的定位以及航行距離的設定。
(l) 航行測試並觀察試航過程中船是否有左右搖晃的可能。
(m) 開始船模阻力實驗，總共有五個速度，每個速度航行兩次，共進行十次航行
找出十個船模阻力數據。
(n) 將船模從拖曳車上拆離，再以吊車移動船模至陸地進行船翼安裝。
(o) 安裝完畢之後，將船模移入拖航水槽進行第二次吃水線壓載校正。
(p) 船模安裝於潛航器拖曳車中央的夾船裝置組，並詳細檢查船模
與潛航器拖曳車是否位置有左右對稱。
(q) 開始船模阻力實驗，總共有五個速度，每個速度航行兩次，共進行十次航行
找出十個船模阻力數據。
(r) 船模阻力實驗完成。

本實驗必須注意之問題摘要如下：
(1) 在進行航行實驗中，航行開始與結束的加速減速階段夾船器要夾起，等速航
行階段夾船器要放下。
(2) 阻力測量儀在進行砂碼校正時，每一個公斤數要校正兩遍，之後再取平均值，
以確保電壓與公斤換算時的準確性。
(3) 為了確保每一次實驗的初始值誤差不會太大，儀器避免拆卸裝配。
(4) 從實驗數據與圖表觀察，隨著設定的速度增大，船阻也跟著變大。
(5) 我們從二十次數據觀察，有裝消波翼量測出來的阻力的確比沒有裝的時候來
的小，我們可以驗證裝消波翼的功能是在減低船模阻力。
(6) 將船模安裝於潛航器拖曳車時，為了避免左右指向的問題，船模位置和拖車
必須左右對稱，才能量測出正確的阻力值。
(7) 吃水線壓載校正，最好是船模左右兩邊都畫出吃水線，這樣才能確保壓載重
量左右兩邊是否完全平衡。
(8) 在安裝攝影機時，需要注意探照燈的位置，避免水面反光，導致無法攝影出
船體水面波紋。
(9) 每一次航行前，需確定水面是否完全平靜，一旦不平靜，測出的初始值會震
盪很大，無法量測出正確的阻力大小。
(10) 若空壓機線路過於老舊，因立即更換，否則在運轉時會因破洞而漏氣，無法
補充氣壓於夾船器，會造成實驗中夾船器突然鬆脫。
(11) 計算每一次航行速度時船模阻力大小的時候，先將初始值的區間以及等速前
進的區間找出並分別計算平均數，最後再由等速前進區間的平均減掉航行起
動加速段初始值區間的平均而得到每一次航行速度時的船模阻力大小。

5.2 本研究消波翼裝設過程(附照片說明) 如下:

(1) 消波翼未裝設前

圖 5-5 船側左側圖
圖 5-6 船側正視圖

圖 5-7 船側右側圖

(2) 消波翼裝設進行

圖 5-8 決定消波翼裝設位置
圖 5-9 將消波翼裝設位置磨光
5.3 實驗結果

本實驗之結果摘錄於表 5-1 中，此外，亦將結果繪於圖 5-12 中。其中阻力減少百分比之計算公式如下:

\[
\text{船模減少阻力百分比(%) = } \frac{\text{無消波翼阻力} - \text{有消波翼阻力}}{\text{無消波翼阻力}} \times 100\%
\]

表 5-1 實驗之結果

<table>
<thead>
<tr>
<th>船速 m/sec</th>
<th>阻力 kg</th>
<th>無消波翼</th>
<th>有消波翼</th>
<th>阻力減少百分比(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14</td>
<td>1.25245</td>
<td>1.22122</td>
<td></td>
<td>2.493512715</td>
</tr>
<tr>
<td>1.22</td>
<td>1.50225</td>
<td>1.46051</td>
<td></td>
<td>2.778498918</td>
</tr>
<tr>
<td>1.30</td>
<td>1.83688</td>
<td>1.77581</td>
<td></td>
<td>3.324659205</td>
</tr>
<tr>
<td>1.42</td>
<td>2.30804</td>
<td>2.25954</td>
<td></td>
<td>2.101350063</td>
</tr>
<tr>
<td>1.53</td>
<td>3.06094</td>
<td>2.97108</td>
<td></td>
<td>2.935666821</td>
</tr>
</tbody>
</table>
由實驗之結果可得以下結論:
(1)由實驗結果可以知道船有裝消波翼(foil)時阻力有減少的趨勢。
(2)阻力減少百分率大概都在2.1%~3.3%之間。此外因為本研究之最佳消波翼乃在船速為時所設計，且由實驗之結果亦可知此時之減阻效果最佳。由此驗證 CFD 之設計的確正確。

未裝消波翼與已裝消波翼之漁船在各船速下實驗之船舶興波情況之比較圖如下所示:
V=1.42 m/s(未裝消波翼) 時之興波
V=1.42 m/s(已裝消波翼) 時之興波

V=1.53 m/s(未裝消波翼) 時之興波
V=1.53 m/s(已裝消波翼) 時之興波

由上面十張照片得知在同速度下有裝消波翼比沒有裝時，水波明顯小很多，
更可驗證船模所受到的阻力變小。且速度慢慢增大時，水波慢慢增大，船模所受
阻力也因此變大。

在有裝消波翼的五張圖，可發現等速度 1.14(m/s)時，消波翼有一半浮出水面，
隨著速度增加消波翼沉越深，而等速度 1.53(m/s)時，消波翼沉最深。仔細觀察
有裝消波翼的五個圖，我們發現消波翼的前面及左右邊皆沒有水波的產生，可驗
証消波器具有消除水波的功能。

因為本消波器可減低阻力約 3.3%，因此在相同之船速下應可減少用油成本約
3.3%。此外安裝成本依據尋價結果必須依不同船隻種類而異。鐵殼船較易安裝，
FRP 船亦可安裝，但成本可能稍高。一般而言本消波器之製造成本約在五到十萬
元間，安裝成本約在三萬元以下。

目前國外亦有消波器之研究，但形狀與安裝位置與本研究均不同。由於若欲
進行比較將是一大工程，且並為在本計畫書中載明為本計畫必須執行之項目，因
此以後若有後續之研究將優先執行。
参考文献

