Mechanism and lifetime prediction method for hot-carrier-induced degradation in lateral diffused metal-oxide-semiconductor transistors

Jone F. Chen,1,a) Kuen-Shiuian Tian,1 Shiang-Yu Chen,1 J. R. Lee,1 Kuo-Ming Wu,2 and C. M. Liu1

1Institute of Microelectronics, Department of Electrical Engineering, and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan
2Taiwan Semiconductor Manufacturing Company, Hsinchu 30077, Taiwan

(Received 13 May 2008; accepted 29 May 2008; published online 16 June 2008)

The mechanism of hot-carrier-induced degradation in n-type lateral diffused metal-oxide-semiconductor (LDMOS) transistors is investigated. Experimental data reveal that hot-electron injection induced interface state generation in channel region is the main degradation mechanism. Since gate current \(I_g\) consists mainly of electron injection, \(I_g\) correlates well with device degradation. As a result, a lifetime prediction method based on \(I_g\) is presented for the purpose of projecting hot-carrier lifetime in LDMOS transistors. © 2008 American Institute of Physics. [DOI: 10.1063/1.2947588]

Lateral diffused metal-oxide-semiconductor (LDMOS) transistors have been widely used in many integrated smart-power applications because of their compatibility with standard complementary metal-oxide-semiconductor (CMOS) process. Because LDMOS devices are usually operated under high voltages, hot-carrier-induced degradation may become a serious reliability concern. To achieve a wide variety of high-voltage applications, LDMOS devices differ in device design significantly. Thus, hot-carrier-induced degradation in LDMOS transistors is more complicated than that in low-voltage metal-oxide-semiconductor field-effect transistors (MOSFETs). Several papers have reported that the degradation behavior in LDMOS transistors is quite different from that in MOSFETs.1–3 To evaluate hot-carrier reliability of the device, it is crucial to identify the degradation mechanism and predict hot-carrier lifetime of the device. In this letter, hot-carrier-induced degradation in n-type LDMOS transistors is investigated. Experimental results reveal that device degradation is induced by interface state \(N_i\) generation resulting from hot-electron injection in channel region. In addition, gate current \(I_g\) correlates well with device degradation. Finally, a lifetime prediction method based on \(I_g\) is presented for the purpose of projecting hot-carrier lifetime in our LDMOS devices.

The schematic cross section of the n-type LDMOS transistor used in this letter is shown in Fig. 1. This device is fabricated with a modified 0.25 μm CMOS process and features a n− drift region near the drain. The channel region \(L_{ch}\) and drift region \(L_{dr}\) are indicated in the figure. \(L_{ch}\) is about 0.5 μm and \(L_{dr}\) is roughly 0.7 μm. The gate oxide thickness and width of the device are 30 nm and 20 μm, respectively. The operational voltage of the device is 12 V for both drain voltage \(V_{ds}\) and gate voltage \(V_{gs}\). dc stressing under \(V_{ds}=13.2\) V and various \(V_{gs}\) (6, 9, and 12 V) is performed at room temperature. To evaluate hot-carrier-induced interface state generation \(\Delta N_i\), charge pumping technique similar to the method proposed in Ref. 6 is carried out during stressing. The stress tests are interrupted periodically to measure the degradation of device parameters [including on-resistance \(R_{on}\) and maximum transconductance \(G_{m,\text{max}}\)] and charge pumping current \(I_{cp}\). \(R_{on}\) is measured under \(V_{ds}=0.1\) V and \(V_{gs}=12\) V, while \(G_{m,\text{max}}\) is extracted under \(V_{ds}=0.1\) V.

Figure 2 shows substrate current \(I_{sub}\) and \(I_g\) as a function of \(V_{gs}\) for the device biased at \(V_{ds}=13.2\) V. Only one \(I_{sub}\) maximum occurs at \(V_{gs}=V_{ds}/2\), which is similar to the behavior in MOSFETs. \(I_g\) increases monotonically and its maximum occurs at \(V_{gs}=12\) V, indicating that more electrons are injected into gate as \(V_{gs}\) increases. In Fig. 3, \(R_{on}\) and \(G_{m,\text{max}}\) degradation as a function of \(V_{gs}\) during stressing (6, 9, and 12 V) are examined for devices stressed under \(V_{ds}=13.2\) V for 3000 s and two observations are found. First, the device stressed under higher \(V_{gs}\) produces greater device degradation. This trend is different from that in MOSFETs, where hot-carrier-induced degradation is closely related to \(I_{sub}\) and the device with larger \(I_{sub}\) is expected to produce greater device degradation.4–10 However, data in Fig. 3 show that the \(V_{gs}\) to produce the most device degradation \(V_{gs}=12\) V) matches with the \(V_{gs}\) to produce \(I_g\) maximum rather than the \(V_{gs}\) to produce \(I_{sub}\) maximum. Such a result suggests that \(I_g\) is a potential monitor to judge the severity of device degradation. Second, under the same \(V_{gs}\) during stressing, \(G_{m,\text{max}}\) degradation is much greater than \(R_{on}\) degradation. Such a result reveals that hot-carrier-induced damage is mainly located in channel region rather than n− drift region since \(G_{m,\text{max}}\) degradation is attributed to the decrease in channel mobility caused by \(\Delta N_i\) in Si/SiO2 interface.7

To evaluate hot-carrier-induced \(\Delta N_i\) in our LDMOS transistors, charge pumping measurement is performed. The

\[\Delta N_i = \frac{\int I_{cp} \, dV_{gs}}{V_{gs}} \]

FIG. 1. (Color online) Schematic cross section of the n-type LDMOS device used in this letter. The channel region \(L_{ch}\) and drift region \(L_{dr}\) are indicated in the figure.
pulse with a fixed high level (V_b) and a variable base level (V_g) at a frequency of 500 kHz is applied to the gate. From technology computer-aided-design simulation results (under V_d=0 V), flatband voltage (V_fb), and threshold voltage (V_th) along Si/SiO2 interface can be extracted. V_fb is from 0.3 to −1 V in L_{ch} region and from −1 to −2.5 V in L_{dr} region. V_th is from 1.9 to 0 V in L_{ch} region and from 0 to −1 V in L_{dr} region. As a result, ∆N_{it} located in channel region can be sensed when V_g=4 V and V_b is varied from −1 to 3.5 V. ∆N_{it} in drift region can be sensed when V_b=0 V and V_g is varied from −3 to −0.5 V. Thus, ∆N_{it} can be extracted from charge pumping data by

$$\Delta N_{it} = \frac{\Delta I_{cp}}{qWL_{cp}},$$

(1)

where \(\Delta I_{cp}\) is hot-carrier-induced increase in charge pumping current, \(f\) is the frequency of gate pulse, \(W\) is polygate width, and \(L_{cp}\) is the length of region where interface states are probed, i.e., L_{ch} or L_{dr}. The extracted \(\Delta N_{it}\) data reveal that \(\Delta N_{it}\) is significant in channel region, while \(\Delta N_{it}\) is small in drift region. Such a result is consistent with data analysis in Fig. 3 that hot-carrier-induced damage is mainly located in channel region. Figure 4 shows \(R_{on}\) and \(G_{max}\) degradation as a function of \(\Delta N_{it}\) in channel region for the devices in Fig. 3. ∆N_{it} correlates well with device degradation.

For LDMOS devices, \(R_{on}\) is a critical device parameter in terms of device performance. To evaluate the reliability of the device, finding a prediction method to project \(R_{on}\) lifetime (\(\tau\)) is necessary. Since the degradation mechanism in our LDMOS device is hot-electron injection in channel region and \(I_g\) consists mainly of electron injection, it is intuitive to infer that \(I_g\) correlates well with device lifetime. To confirm the above argument, Fig. 5 shows \((\tau\times I_d)\) as a function of \((I_g/I_d)\) for devices with various \(L_{ch}\) and \(L_{dr}\) (\(L_{ch} = 0.5–0.7 \mu m\) and \(L_{dr} = 0.6–1.0 \mu m\)) under different stress conditions (V_{gs}=13.2 V, V_{gs}=6 and 12 V). \(\tau\) is defined as the time needed to reach 10% of \(R_{on}\) degradation using power-law extrapolation. As seen in Fig. 5, data can be fitted to a straight line with a slope of −1.26 for both stressing V_{gs}. Such a result can be further analyzed by the following quantitative analysis. Using a procedure similar to the model for hot-electron effects proposed by Hu et al., the following three equations can be obtained:

$$I_g = C_1 I_d e^{-\phi_{it}/qE_m},$$

(2)

$$\tau = C_2 \frac{W}{I_d} e^{\phi_{it}/qE_m},$$

(3)

$$\frac{\tau I_d}{W} = C_3 \left(\frac{I_d}{I_{ch}}\right)^{-\phi_{it}/\phi_{ig}},$$

(4)

where \(C_1\), \(C_2\), and \(C_3\) are technology-dependent parameters, \(\phi_{it}\) is the energy required to create gate current, \(\phi_{it}\) is the energy needed to create interface state, \(\lambda\) is hot-electron mean-free path, and \(E_m\) is the maximum channel electric field. From Eq. (4), the physical meaning of the slope in Fig. 5 is \(-\phi_{it}/\phi_{ig}\). Using \(\phi_{ig}=3.1 eV\) (the barrier height for elec-
trons to be injected to gate oxide and the slope in Fig. 5, one can derive $\varphi_{it}=3.1 \text{ eV} \times 1.26=3.9 \text{ eV}$, which is close to the value (3.7 eV) obtained by Hu et al.10 Such a quantitative agreement confirms that ΔN_{it} created by hot-electron injection in channel region is the major degradation mechanism in our device. In addition, Eq. (4) can be used to predict hot-carrier lifetime of the device.

In this letter, the mechanism and lifetime prediction method for hot-carrier-induced degradation in LDMOS transistors are discussed. Experimental results indicate that hot-electron injection induced N_{it} generation in channel region is responsible for device degradation. Since I_g consists mainly of electron injection, I_g correlates well with device degradation. Finally, a lifetime prediction method based on I_g is presented. Such a method is useful in projecting hot-carrier lifetime of LDMOS devices.