Anomalous increase in hot-carrier-induced threshold voltage shift in n-type drain extended metal-oxide-semiconductor transistors

Jone F. Chen,1,a) Shiang-Yu Chen,1 J. R. Lee,1 Kuo-Ming Wu,2 Tsung-Yi Huang,2 and C. M. Liu3

1Institute of Microelectronics, Department of Electrical Engineering, and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan
2Taiwan Semiconductor Manufacturing Company, Hsinchu 30077, Taiwan

(Received 30 January 2008; accepted 4 March 2008; published online 19 March 2008)

Anomalous increase in positive threshold voltage shift (ΔVT) in n-type drain extended metal-oxide-semiconductor (DEMOS) transistors stressed under high drain voltage and gate voltage is observed. Charge pumping data and technology computer-aided-design simulations reveal that hot-electron injection and trapping in the gate oxide above channel region is responsible for ΔVT. Enhanced impact ionization rate resulted from the presence of large amount of negative oxide charge in channel region is identified to be the main mechanism for anomalous increase in ΔVT. From the results presented in this letter, hot-carrier-induced anomalous increase in ΔVT can become a serious reliability concern in DEMOS transistors. © 2008 American Institute of Physics.

[DOI: 10.1063/1.2901878]

To reduce chip size and cost in power applications, high-voltage devices integrated into mature complementary metal-oxide-semiconductor (CMOS) process have attracted much attention recently. Among many types of high-voltage devices, drain extended MOS (DEMOS) transistors are extensively used in display drivers. One major reliability concern in DEMOS transistors is hot-carrier reliability because devices are often operated under high drain voltage (Vd) and high gate voltage (Vg).4–7 It has been reported that hot-carrier-induced on-resistance (Ron) degradation is much greater than threshold voltage shift (ΔVT), indicating that hot-carrier-induced damage is mainly located in drift region.4 In this letter, however, anomalous increase in positive ΔVT but small Ron degradation is observed in our DEMOS device stressed under high Vg and high Vd. Charge pumping data reveal that significant ΔVT is attributed to large amount of hot-electron injection and trapping in the gate oxide above channel region. Technology computer-aided-design (TCAD) simulations suggest that enhanced impact ionization (I.I.) rate resulted from the generation of negative oxide charge in channel region is the main mechanism responsible for anomalous increase in ΔVT. The effect of negative oxide charge in channel region on vertical electric field (Ez) of the device is also discussed.

The device investigated in this letter is n-type DEMOS transistor processed by a 0.25 μm CMOS compatible high-voltage technology. Schematic cross section of the device is shown in Fig. 1. The typical operation voltage of the device is 20 V for both Vg and Vd, dc hot-carrier stressing under Vg=20 V and various Vd is carried out at room temperature with the source and bulk terminals connected to the ground. To determine the bias condition in charge pumping measurement, flat-band voltage (Vfb) and threshold voltage (VT) in channel region are obtained from TCAD simulation. Vfb and VT are defined as the Vg when the concentration at Si/SiO2 interface reaches 1014 cm−2 for hole and electron, respectively. From simulation results, Vfb is roughly −0.4 V, while VT is about 1 V. The pulse with high level fixed at 4 V and low level (Vgl) varied from −0.4 to 2 V is applied to the gate under a frequency of 500 kHz. To extract hot-carrier-induced damage in the channel region, charge pumping current (Icp) is measured at source terminal while the drain is floating. From charge pumping data, a method similar to the one proposed by Cheng et al.8 is used to extract hot-carrier-induced oxide charge density (ΔNox) and interface state density (ΔNit) in channel region. The stress tests are periodically interrupted to measure degradation of device parameters (including VT and Ron) and Icp. VT is extracted at Ved=0.1 V, while Ron (=Vd/Icp, Icp is drain current) is measured when Ved=0.1 V and Vg=20 V. In addition to stress tests, two-dimensional TCAD simulations are also performed and I.I. rate and Ez are analyzed to support the proposed degradation mechanism.

When the device is stressed under Vg=26 V and the Vd to produce bulk current (Ib) maximum condition (Vg=9 V) for 5000 s, both ΔVT (1 mV) and Ron degradations (<1%) are small. However, significant ΔVT (VT increases after stress) and some Ron degradations are exhibited when devices are stressed under Vg=20 V with various Vd, as shown in Fig. 2. The time dependence of Ron degradation follows the expected power-law relationship. ΔVT is small

a)Electronic mail: jfchen@mail.ncku.edu.tw.
(<4 mV) during the early stage of stressing (typically between 10^1 and 10^2 s). However, anomalous increase in ΔV_T is observed after about 10^2 s. To investigate the physical degradation mechanism responsible for ΔV_T, I_{ot} of the device stressed under $V_d=26$ V and $V_g=20$ V is measured and shown in the rightward inset of Fig. 3. Hot-carrier-induced ΔN_{ot} in channel region is extracted from charge pumping data by

$$\Delta N_{ot} = \Delta V_{fb} C_{ox}/q,$$

where ΔV_{fb} is stress-induced shift in flat-band voltage and C_{ox} is gate oxide capacitance. The extracted ΔN_{ot} is shown in Fig. 3 and the time dependence of ΔN_{ot} is similar to the time dependence of ΔV_T in Fig. 2. On the other hand, hot-carrier-induced ΔN_{ot} can be extracted from a properly leftward shift of I_{cp} spectrum by the amount of ΔV_{fb}. The resulting I_{cp} due to ΔN_{ot} only is shown in the leftward inset of Fig. 3. From the results in Fig. 3, two distinct features are found. First, there is no apparent shift in I_{cp} spectrum (i.e., negligible ΔN_{ot}) during the early stage of stressing (10 s). However, a significant rightward shift in I_{cp} spectrum (i.e., significant negative ΔN_{ot}) is observed when the stressing is long enough (500, 1000, and 5000 s). Second, I_{cp} increase due to ΔN_{ot} is small, suggesting that ΔN_{ot} is negligible. Such a result indicates that hot-electron injection and trapping in the gate oxide above the channel region is the main mechanism responsible for positive ΔV_T. The driving force of hot-electron injection is large E_x in the channel region and is discussed in the following paragraph.

To explain the anomalous increase in ΔV_T, normalized I.I. rate (i.e., $|I_b/I_d||$,I_b/I_d is bulk current) for the device stressed under $V_d=26$ V and $V_g=20$ V is analyzed. As shown in Fig. 4, $|I_b/I_d|$ is close to unity during the early stage of stressing. However, $|I_b/I_d|$ rapidly increases as the stress time is longer than 10^2 s. In addition, Fig. 4 reveals that $|I_b/I_d|$ and ΔV_T have a similar anomalous increasing behavior, indicating that the anomalous increase in ΔV_T is related to enhanced I.I. rate. To identify the mechanism responsible for enhanced I.I. rate, the effect of negative ΔN_{ot} on the magnitude of I.I. rate and E_x is examined by TCAD simulations. Figures 5(a) and 5(b) show I.I. rate (where the impact ionization model proposed by Selberherr is used in simulation) and E_x (along the dot line in the inset) under $V_d=26$ V and $V_g=20$ V for devices with or without the presence of ΔN_{ot} in the channel region. The origin of x axis in Fig. 5(b) is the location of p^+n^+ junction and ΔN_{ot} is uniformly distributed between $x=-0.8$ μm and 0 (where electron injection probability is significant) in simulations. The amount of ΔN_{ot} is varied from small (5×10^{10} cm^{-2}) to large (7×10^{11} cm^{-2}). The simulated ΔV_T is less than 4 mV when

FIG. 2. (Color online) R_{on} degradation shows the expected power-law relationship. ΔV_T is small during the early stage of stressing; however, anomalous increase in ΔV_T is observed after about 10^2 s.

FIG. 3. (Color online) Hot-carrier-induced ΔN_{ot} in the channel region is extracted. I_{cp} data measured at various stress time are presented (rightward inset). The I_{cp} spectrum due to ΔN_{ot} only is also extracted (leftward inset).

FIG. 4. (Color online) During stressing, $|I_b/I_d|$ and ΔV_T show a similar anomalous increasing behavior, indicating that the anomalous increase in ΔV_T is related to enhanced $|I_b/I_d|$.

FIG. 5. (Color online) Simulated (a) I.I. rate and (b) E_x under $V_d=26$ V and $V_g=20$ V for the devices with or without the presence of negative ΔN_{ot} in channel region. I.I. rate and E_x are almost identical when small ΔN_{ot} is present. I.I. rate is greatly enhanced but E_x is reduced when large ΔN_{ot} is present.

Downloaded 12 Oct 2009 to 140.116.208.56. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp
\(\Delta N_{ot} = 5 \times 10^{10} \text{ cm}^{-2} \), while simulated \(\Delta V_T \) is about 47 mV when \(\Delta N_{ot} = 7 \times 10^{11} \text{ cm}^{-2} \). The relationship between \(\Delta V_T \) and \(\Delta N_{ot} \) is similar in simulation and measurements when the above simulated \(\Delta V_T \) results are compared to \(\Delta V_T \) and \(\Delta N_{ot} \) data in Figs. 2 and 3. As shown in Fig. 5(b), large positive \(E_y \) (favors for electron injection into SiO\(_2\)) in the channel region is identified to be the main mechanism responsible for the anomalous increase in \(\Delta V_T \). The gradual saturation behavior in \(\Delta V_T \) when \(\Delta V_T \) is significant is attributed to the reduction of \(E_y \). The results presented in this letter indicate that the anomalous increase in \(\Delta V_T \) may become a serious concern and should be taken into consideration in evaluating hot-carrier reliability of DEMOS devices.

In summary, hot-carrier-induced anomalous increase in \(\Delta V_T \) in DEMOS transistors stressed under high \(V_d \) and high \(V_g \) is examined. Hot-electron injection and trapping in the gate oxide above channel region causes positive \(\Delta V_T \). Enhanced I.I. rate during stressing resulted from the presence of large \(\Delta N_{ot} \) is identified to be the main mechanism responsible for the anomalous increase in \(\Delta V_T \). The gradual saturation behavior in \(\Delta V_T \) when \(\Delta V_T \) is significant is attributed to the reduction of \(E_y \). The results presented in this letter indicate that the anomalous increase in \(\Delta V_T \) may become a serious concern and should be taken into consideration in evaluating hot-carrier reliability of DEMOS devices.
