The purposes of this study are to investigate the differences of lumbosacral kinematics between degenerative and induced spondylolisthetic subjects, and to understand the development and process of lumbosacral instability. Total of nineteen subjects were included in the study: seven subjects with a diagnosis of degenerative spondylolisthesis (one male and six females, ages ranged from 42 to 82 years with a mean of 58.1 years), and twelve subjects with a diagnosis of induced spondylolisthesis (four males and eight females, ages ranged from 35 to 73 years with a mean of 46.3 years). For each patient, one anteroposterior and three lateral radiographs in the neutral standing, flexion, and extension positions were prepared in the first clinic. In each lateral film we placed a specially designed calibration radiopaque ruler on the midline of the lower back of the subject. Flexion and extension positions were adopted from modified Putto’s method. Computer-assisted method was used to measure intervertebral translation and rotation of different positions. The results showed that the differences of translation among three positions (flexion, standing, and extension) at different level were no statistically significant (p>0.05) except at the level of L4-L5(p<0.05) in degenerative spondylolisthetic subjects and the differences of translation among three positions (flexion, standing, and extension) at different level were statistically significant (p<0.05) except at the level of L5-S1(p>0.05) in induced spondylolisthetic subjects. For rotation, the differences among three positions (flexion, standing, and extension) at different level were statistically significant (p<0.05) in both degenerative and induced spondylolisthetic...
二、前言

腰椎的不稳定，已经被许多研究者视为原因之一。重要因子，而腰椎的椎骨不稳定的诊断方法包括分型及伸展X光片的分析。通过脊椎的X光片分析在临床上仍以腰椎的X光片分析最为常用。此方法Knutsson 早在 50 年代就提出，但它没有定义正常椎骨活动的范围。

三、模型和方法

本实验的受测者皆来自成大医院骨科的脊椎外科门诊中随机选取，经成大骨科医师诊断为退化性椎骨滑脱症(degenerative spondylolisthesis)及潜在性的椎骨滑脱症(induced listhesis)，亦即正常的脊椎X光片为正常，但椎骨的X光片可显示椎间活动度的异常);参与本实验的受测者必须符合下列条件：(1)无接受手術方法矫正者；(2)无其它严重脊椎方面疾病或病变，如椎骨侧弯、椎骨後弯(3)必须是只有单一个地方(第四腰椎与第五腰椎之间(L4-L5)椎骨滑脱的病人)，且滑脱的等級为第一等級(grade I)。(4) 没有腰椎椎骨化(lumbar sacralization)或椎骨椎骨化(sacral lumbarization)。(5)有高度合作度和参与感者。

照X光的姿势

每位受测者均拍下4张X光片，站立的姿势下接受前後与侧面观察及侧躺(sidelying)屈曲和伸展不同姿势下接受侧面观的X光腰椎摄影各拍照一张。前後观提供健康资料；侧面观作为术前的分析。当受测者在站立时的前後观及侧面观X光腰椎摄影的时候在受测者后方放置一个有铅重的铝片，在前後观拍攝X-ray时，铅片要对準受测者的鼻樑中心；在侧方拍攝X-ray时，铅片要对準受测者的耳朵基础中心。此外，在每一张的侧面观摄影时，我们设计了一个中心、侧边和前後观的percipal ruler，拍攝X光片时均配置於受测者的脊椎。
椎背部中線，作為校正之用。而在側面觀的屈曲和伸展的姿勢，本來是採用 Putto’s 的方法[4]，但由於有些年紀大的受測者無法做到，並在此姿勢下拍 X-ray 攝影危險性高，基於安全性考量，我們改為在側傾的姿勢下，軸幹往前最大屈曲和最大伸展。另外我們設計骨盒固定器來固定骨盒，使其不影響比較。

數位化和資料的收集

在站立、屈曲和伸展的每一張側面觀的 X 光片上取 26 點(圖 2-7)，包括第一腰椎至第五腰椎(L1-L5)於每一個椎體上 4 個角落(corners)處，分別各取 1 點，此點的位置分別為 前角 2 點 (anterosuperior、anteroinferior lips)，後角 2 點 (remnants of Luska’s joints)；而在 S1 上的 3 點分別在第一椎的上終板 (upper end plate) 的 2 個角落及後下方的角落各取 1 點及在透視尺取 3 點。因為將椎體視為剛體 (rigid body)。而以上各點的座標由一套電腦位置量測系統來量測，包含一組透光性數位位板及 SigmaScan software。在數位化的過程中透視尺上有水平及垂直方向的點，每兩個點是固定一公分的長度為了校正之用，各點的座標再經由撰寫實用性的程式 Matlab 計算相鄰兩椎體的角度和位移。

測量位移和角度

本實驗所要收集的資料，主要是在測量在站立、屈曲及伸展三種不同的姿勢下從第一腰椎至第一椎各節之間 (L1-L2,L2-L3,L3-L4,L4-L5,L5-S1) 的角度 (segmental rotation) 和 位 移 (segmental translation)。本實驗在椎體上的座標系統是採用 Panjabi 的座標系統[4]，因此，在矢狀面的角度是繞著 X 軸旋轉的角度。而相鄰兩椎體的角度是由椎間盤周圍上下四點所形成的兩條直線之夾角計算，在計算位移時，是以每一個椎體的下角的那一點當作參考點來計算。此位移被定義為: 由上椎體的後下角 (posteroinferior) 的點對下一個椎體的後上角及後下角所形成的直線作垂線，該交點與上椎體後下角的點之距離即為椎體移動的位移。在單獨站立、屈曲及伸展三種不同的姿勢下所量測的角度和位移稱為靜態的位移和角度 (static translation and rotation)，若屈曲位移或角度與伸展位移或角度相對的差，稱為位移總活動範圍或角度總活動範圍 (total intersegmental translation or rotation)。為了比較方便，在角度上，我們把脊柱後傾的角度 (kyphotic angle) 取負值，脊柱前傾的角度 (lordotic angle) 取正值。在位移上，若椎體往前移 (anthetic) 取負值，椎體往後移 (retrolisthetic) 取負值。

實驗設備

(1) 骨盆固定架
受測者在側傾屈曲及伸展 X 光攝影時，必須用骨盆固定架將受測者的骨盆固定住，使腰椎椎活動度不會受到骨盆的前傾或後傾所影響，並且可以增加實驗的準確性。

(2) 透視尺
在透視尺內裝有一塊 8cm*2cm*2mm 大小的鉛塊，鉛塊上有水平及垂直方向三個不共線的鑽孔，孔與孔之間為一公分，為了解校正之用。

(3) 透光性數位位板(Back-lit tablet(REV-B：Gito Corporation))
每一片 X 光片必須在透光性數位位板上取所規定的 26 點，經由 SigmaScan software 轉換成數位化及座標系統的資料。

實驗流程

經由成大骨科醫師所篩選的受測者，每一位必須在站立、屈曲及伸展的姿勢下，接受 X 光前後觀及側面觀腰椎椎攝影，共四張。其中在側面觀的 X 光腰椎椎攝影的 X 光片中取 26 點。經由一組透光性數位位板及 SigmaScan software 轉換成數位化
的資料及座標系統的資料，經由 Matlab program 計算角度和位移，然後經由統計分析之。

實驗準備

本實驗需要詳細的評估和記錄受測者病歴資料，包括：下背痛(low back pain)和日常活動限制(daily activity limitation)的評估表(JOA Score)[5]及基本資料(如：年齡、身高、體重、性別等)。在 JOA Score 評估表總共有 23 分，分數不同代表臨床症狀嚴重程度的不同，若分數分別在 16 分至 23 分，8 分至 15 分，0 分至 7 分之間，分別稱為輕度障礙(mild disability)、中度障礙(moderate disability)及重度障礙(severe disability)。

資料分析與統計

(1) 採用 Repeated measures ANOVA test 比較退化性脊椎滑脫受測者，在站立、屈曲及伸展三種不同姿勢下，腰篳椎間(L1-L2 至 L5-S1)靜態位移和角度是否具有統計上顯著的差異(α=0.05)。

(2) 採用 Repeated measures ANOVA test 比較潛在性脊椎滑脫受測者，在站立、屈曲及伸展三種不同姿勢下，腰篳椎間(L1-L2 至 L5-S1)靜態位移和角度是否具有統計上顯著的差異(α=0.05)。

(3) 採用 Independent-Samples t-test 比較退化性和潛在性脊椎滑脫受測者在位移總活動範圍和角度總活動範圍，在腰篳椎間(L1-L2 至 L5-S1)是否具有統計上顯著的差異(α=0.05)。

(4) 採用無母數的 Mann-Whitney 考驗比較輕度障礙和中度障礙退化性脊椎滑脫症受測者在 L4-L5 level 位移總活動範圍是否具有統計上顯著的差異(α=0.05)。

(5) 採用 Independent-Samples t-test 比較輕度障礙和中度障礙潛在性脊椎滑脫症受測者在 L4-L5 level 位移總活動範圍是否具有統計上顯著的差異(α=0.05)。

(6) 採用 Pearson 相關係數(correlation coefficient)比較退化性脊椎滑脫受測者在 L4-L5 level 位移總活動範圍和角度總活動範圍之間的關係(α=0.05)。

(7) 採用 Pearson 相關係數(correlation coefficient)比較潛在性脊椎滑脫受測者在 L4-L5 level 位移總活動範圍和角度總活動範圍之間的關係(α=0.05)。

結果

本實驗共收集 L4-L5 退化性脊椎滑脫 7 名(3 名輕度障礙及 4 名中度障礙)平均年齡 58.1 歲，其中 1 位男，6 位女及 L4-L5 潛在性脊椎滑脫 12 名(6 名輕度障礙及 6 名中度障礙)平均年齡 46.3 歲，其中 4 位男，8 位女。另外，按 Meyerding 的分級法，脊椎滑脫轉可被分為四個級別，而本實驗的受測者依 Meyerding 的分級僅可將其分為 Grade I。退化性和潛在性脊椎滑脫受測者在站立、屈曲及伸展三種不同姿勢下，腰篳椎間除了 L4-L5 有明顯的差異外(p<0.05)，其餘皆無顯著統計上的差異(P>0.05)。若再以姿勢來比較，除了屈曲與伸展有顯著的差異外(p<0.05)，其餘站立與屈曲及站立與伸展皆無顯著的統計上差異(p>0.05)。而在潛在性脊椎滑脫受測者在站立、屈曲及伸展三種不同姿勢下，腰篳椎間除了 L5-S1 無明顯的差異外(F=2.531，p>0.05)，其餘皆有顯著的統計上差異(p<0.05)。若再以姿勢來比較，除了站立與伸展無顯著的差異外(p>0.05)，其餘站立與屈曲及屈曲與伸展皆有顯著的統計上差異(p<0.05)。在角度方面，退化性脊椎滑脫受測者在站立、屈曲及伸展三種不同姿勢下，腰篳椎間(L1-L2)皆有明顯的統計上差異(P<0.05)。若再以姿勢來比較，L1-L5 除了站立與伸展無顯著的差異外(p>0.05)，其餘站立與屈曲及屈曲與伸展無顯著的差異外(p>0.05)，其餘站立與屈曲及屈曲與伸展無顯著的差異外(p>0.05)。
展皆有明显的统计上差异 \((p<0.05)\)。而 L5-S1 除了站立与屈曲无明显的差异外 \((p>0.05)\)，其余站立与伸展及屈曲与伸展皆有明显的统计上差异 \((p<0.05)\)。而潜在性脊椎滑脱受测者在站立-屈曲及伸展三种姿势下，腰椎侧弯（L1-S1）的角度统计上差异与退化性脊椎滑脱受测者相同。

由表一结果显示在位移总活动范围方面，虽然潜在性脊椎滑脱受测者在位移总活动范围除了 L5-S1 外，其余腰椎侧弯都比退化性脊椎滑脱症受测者大，但在统计上除了 L3-L4 有明显的差外 \((t=2.832, p<0.05)\)，其余腰椎侧弯皆无明显的统计上差异 \((p>0.05)\)。由表一结果显示在角度总活动范围方面，虽然潜在性脊椎滑脱受测者在角度总活动范围都比退化性脊椎滑脱受测者大，但在统计上皆无明显的统计上差异 \((p>0.05)\)。

在退化性脊椎滑脱七名受测者中有三名轻度障碍及四名中度障碍，他们在 L4-L5 level 最大位移和位移总活动范围的平均值和标准差见表二。由表二结果显示轻度障碍退化性脊椎滑脱受测者在最大位移和位移总活动范围都比轻度障碍大，但经由 Mann-Whitney U 考验分析轻度障碍和中度障碍退化性脊椎滑脱受测者在 L4-L5 level 最大位移和位移总活动范围，结果两者皆不具有统计上显著的差异 \((p=0.4, p=1.0)\)。

在潜在性脊椎滑脱十二名受测者中有六名轻度障碍及六名中度障碍，他们在 L4-L5 level 最大位移和位移总活动范围的平均值和标准差见表三。由表三结果显示中度障碍潜在性脊椎滑脱受测者在最大位移和位移总活动范围都比轻度障碍大，但经由 Independent-Sample t-test 分析轻度障碍和中度障碍潜在性脊椎滑脱受测者在 L4-L5 level 最大位移和位移总活动范围，结果两者皆不具有统计上显著的差异 \((p=0.078, p=0.111)\)。

退化性和潜在性脊椎滑脱受测者在 L4-L5 level 分别对位移总活动范围和角度总活动范围大小的关係做研究，从表一得知退化性和潜在性脊椎滑脱受测者在 L4-L5 level 的位移总活动范围和角度总活动范围都比其它 level 大，经由 Pearson 相关系数的统计分析后，结果发现在退化性脊椎滑脱受测者在 L4-L5 level 的位移总活动范围和角度总活动范围大小之间没有关系存在 \((p=0.504, r=-0.306)\)。而潜在性脊椎滑脱受测者在 L4-L5 level 的位移总活动范围和角度总活动范围大小之间经 Pearson 相关系数的统计分析后，结果两者之间也没有关系存在 \((p=0.369, r=0.300)\)。

討論

利用動態 X 光片來測量位移和角度會受系統本身的誤差、X 光片影像的清晰度及本身脊椎是否有其它平面旋轉的影響。尤其是測量位移的資料，因為 X 光片影像會被放大。因此，在我們的實驗過程中，為了減低這些因素的影響，我們選擇影像清晰的 X 光片，並且在照 X 光片的時候我們會在受測者的脊椎中間放置一個透視尺，以前的研究比較不重視透視尺的重要性，在做動作的過程中我們會避免脊椎軸旋轉超過 20 度或側向彎曲超過 10 度，這樣就不會影響我們在 X 光片上取標記 [6]，這樣在計算位移的資料時更準確。在量測系統方面，我們將一張光片取 26 點，重複 20 次量測位移和角度，發現位移和角度的變異係數都在可接受的範圍內。因此，我們所得到的資料是可供參考的，唯一不足的地方就是收集的人數不夠多。雖然利用屈曲及伸展光片分析受測者被動的運動比主動的運動大，這個原因可能是由於受測者在屈曲時因疼痛以致於往前屈曲的活動度被限制。然而本實驗基於安全考量我們採用改良 Putto’s 方法，這種方法即使受測者有嚴重的下背痛也可以測試，所以此方法跟被動運動的差異是微小的，幾乎是可以忽略的。脊椎滑脫的病人種類相當多，有的有症狀，有的無症狀；有的是
單一地方滑脫，有的是兩個地方以上的滑脫，而且滑脫的等級又不一樣。因此，本
實驗為了要更準確判斷脊椎不穩定，我們所收集的受測者都是單一地方滑脫，有
症狀的脊椎滑脫且等級是 Grade I 或 Grade II。但由於本實驗收集的時間有限及人數不
g多，以致於沒有 Grade II 脊椎滑脫的受
測者，因此無法分析有關 Grade II 脊椎滑
脫受測者的資料。

在退化性和潛在性的方面，L1-L5 level 站立與伸展沒有明顯統計上的差異，可能
是由於在站立時間節面比較緊密且
關節面方向比較偏向矢狀面(sagittal
plane)，以致於往後伸展的活動度空間減低
的緣故。而 L5-S1 level 在站立與屈曲沒有
統計上差異，可能是在 L5-S1 level 後面的
韌帶張力比其它 level 強及其關節面比較偏
向冠狀面(coronar plane)，以致於在屈曲時
活動度受到限制；在位移方面，潛在
性 L1-L5 level 在站立與伸展沒有統計上差
異，可能也是由於站立時間節面比較緊密
住，以致於往後伸展的活動度減低的緣
故。而 L5-S1 level 沒有統計上差異，可能
是在 L5-S1 level 後面的韌帶張力比其它
level 強及其關節面比較偏向冠狀面(coronar
plane)，而不是跟 L1-L5 level 的關節面一樣
比較偏向矢狀面(sagittal plane)，以致於往
前屈曲時活動度受到限制。

從表一結果中發現潜在性脊椎滑脫位
移總活動範圍和角度總活動範圍除了
L5-S1 位移總活動範圍外其餘都比退化性
脊椎滑脫位移總活動範圍和角度總活動範
圍大，雖然只有在 L3-L4 level 位移總活動
範圍有統計上的差異外，其餘均無明顯統
計上的差異，但這可能是腰椎椎間不稳
定到穩定的自然過程與發展的一種趨勢。

從實驗中表二和表三發現退化性和潛
在性中度障礙比輕度障礙的最大位移和位
移總活動範圍平均值大，但無明顯統計上
的差異，這跟 1987 年 Friberg[1] 對 45 位脊
椎滑脫受測者所做的研究在最大位移無統
計上的差異，但在位移總活動範圍有統計
上的差異是不同的，可能的原因是因為收
集輕度障礙及中度障礙人數不夠或者是由
於肌肉拉攏及韌帶張力增加所造成的。因
此，需要更多臨床受測者，更長期的研究追
跡以上資料的變化，以便我們能更清楚
明瞭不同症狀的嚴重程度是否會對位移總
活動範圍有影響。

從表一發現退化性脊椎滑脫在 L4-L5
level 位移總活動範圍和角度總活動範圍比
其它 level 都大，但從本實驗的結果顯示兩
者之間沒有任何相關趨勢；從表一發現潛
在性脊椎滑脫在 L4-L5 level 位移總活動範
圍和角度總活動範圍比其它 level 都大，其
結果也顯示兩者之間沒有任何相關趨勢。
這結果與 1990 年 Kalebo et al[7] 對 29 位有
症狀的脊椎滑脫受測者所做的研究結果相
似。由此可知，在滑脫地方的位移總活動
範圍越大不代表角度總活動範圍越大。

結論

本實驗以屈曲及伸展 X 光片對退化
性和潛在性脊椎滑脫受測者，探討三種不
同姿勢下腰椎椎間位移和角度的分析，由
結果分析得以下結論。

(1) 潛在性的位移總活動範圍和角度總活動
範圍在 L1-S1 間幾乎都比退化性的總位
移活動範圍和總角度活動範圍大，這可能
就是腰椎椎間從不穩定到穩定的自然過程與
發展的一種趨勢。

(2) 從屈曲到伸展姿勢的過程中，角度的改
變幾乎是從較小的前凸角度到較大的前凸
角度。

(3) 症狀嚴重程度越大并不代表在滑脫地
方最大位移及位移總活動範圍的量越大。

(4) 在滑脫地方的位移總活動範圍越大並
不代表角度總活動範圍越大。

參考文獻

[1] E. Putto and K. Taliroth, "

<table>
<thead>
<tr>
<th>節間</th>
<th>類別</th>
<th>位移 (mm)</th>
<th>角度(degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>站立</td>
<td>屈曲</td>
<td>伸展</td>
</tr>
<tr>
<td>L1-L2</td>
<td>L4-L5 退化性</td>
<td>-0.7(0.7)</td>
<td>-0.2(1.0)</td>
</tr>
<tr>
<td></td>
<td>L4-L5 潛在性</td>
<td>-0.6(0.9)</td>
<td>0.2(1.0)</td>
</tr>
<tr>
<td>L2-L3</td>
<td>L4-L5 退化性</td>
<td>-1.5(0.5)</td>
<td>-0.7(0.3)</td>
</tr>
<tr>
<td></td>
<td>L4-L5 潛在性</td>
<td>-1.2(1.0)</td>
<td>0.0(0.7)</td>
</tr>
<tr>
<td>L3-L4</td>
<td>L4-L5 退化性</td>
<td>-1.8(1.7)</td>
<td>-0.9(1.2)</td>
</tr>
<tr>
<td></td>
<td>L4-L5 潛在性</td>
<td>-1.3(0.9)</td>
<td>0.3(1.4)</td>
</tr>
<tr>
<td>L4-L5</td>
<td>L4-L5 退化性</td>
<td>-0.7(1.3)</td>
<td>1.2(2.6)</td>
</tr>
<tr>
<td></td>
<td>L4-L5 潛在性</td>
<td>-1.6(1.7)</td>
<td>-2.0(2.0)</td>
</tr>
<tr>
<td>L5-S1</td>
<td>L4-L5 退化性</td>
<td>-1.2(1.1)</td>
<td>-1.1(1.3)</td>
</tr>
</tbody>
</table>

表一 退化性和潛在性脊椎滑脫受損者在站立、屈曲及伸展三種不同姿勢下，腰椎間位移和角度的平均值(標準差)

<table>
<thead>
<tr>
<th>類別</th>
<th>節間</th>
<th>嚴重度</th>
<th>最大位移</th>
<th>位移總活動範圍</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4-L5 退化性</td>
<td>L4-L5</td>
<td>輕度障礙</td>
<td>3.8(2.3)</td>
<td>1.7(1.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>中度障礙</td>
<td>5.9(2.6)</td>
<td>1.9(1.0)</td>
</tr>
</tbody>
</table>

表二 輕度障礙和中度障礙退化性脊椎滑脫在 L4-L5 level 最大位移和位移總活動範圍平均值(標準差)

<table>
<thead>
<tr>
<th>類別</th>
<th>節間</th>
<th>嚴重度</th>
<th>最大位移</th>
<th>位移總活動範圍</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4-L5 潛在性</td>
<td>L4-L5</td>
<td>輕度障礙</td>
<td>-0.2(1.2)</td>
<td>1.2(0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>中度障礙</td>
<td>2.5(3.1)</td>
<td>3.3(2.9)</td>
</tr>
</tbody>
</table>

表三 輕度障礙和中度障礙潛在性脊椎滑脫在 L4-L5 level 最大位移和位移總活動範圍平均值(標準差)