Uncertainty Quantification of Pareto Optimum in Multiobjective Problems

Tzu-Chieh Hung1, Kuei-Yuan Chan2
1 Graduate Student
2 Associate Professor, Corresponding Author
chanky@mail.ncku.edu.tw
Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan

1 Abstract

Design is a multi-objective decision-making process considering manufacturing, cost, aesthetics, usability among many other product attributes. The set of optimal solutions, the Pareto set, indicates the tradeoffs between objectives. Decision-makers generally select their own optima from the Pareto set based on personal preferences or other judgements. However, uncertainties from manufacturing processes and from operating conditions will change the performances of the Pareto optima. Evaluating the impacts of uncertainties on Pareto optima requires a large amount of data and resources. Comparing multiple Pareto solutions under uncertainty are also very costly. In this work, local Pareto set approximation is integrated with uncertainty propagation technique to quantify design variations in the objective space. An optimality influence range is proposed using linear combinations of objective functions that creates a more accurate polygon object variation subspace. A set of ‘virtual samples’ is then generated to form two quantifications of the objective variation subspace, namely an influence noise indicates how the design maintain Pareto, and an influence range that quantifies the overall variations of a design. In most engineering practices, a Pareto optimum with a smaller influence noise and a smaller influence area is preferred. We also extend the influence noise/range concept to nonlinear Pareto set with the second-order approximations. The quadratic local Pareto approximation method in the literature is also extended in this work to solve multi-objective engineering problems with black-box functions. The usefulness of the proposed quantification method is demonstrated using numerical examples as well as using engineering problems in structural design.

2 Keywords: Pareto Set, Uncertainty Propagation, Multi-Objective Problems, Design under Uncertainty

3 Introduction

Engineering design is multidisciplinary across mechanics, economics, and ecology, among many other research fields. For example, the optimization of an electronic packaging problem consists of both electronic and thermal subsystems \cite{1}; the optimal design of an air flow sensor requires both structural and aerodynamics considerations \cite{2}; an appropriate aircraft modeling combines aerodynamics, structural weight, and many other performance measures \cite{3, 4}. This type of cross disciplinary considerations is a common practice in the design of various engineering products \cite{2, 5, 6}.

In this work, multiple disciplines are considered through the existence of multiple objective functions in optimization. Each discipline has its own goal to achieve. The generalized multiobjective formulation is shown in Eq.(1) with \(n \) objective functions to be minimized simultaneously. Design variables \(x \) have to be in the feasible domain \(F \). All design constraints and bounds of \(x \) are implicitly included in \(F \).

\[
\min_x \{ f_1(x), f_2(x), \ldots, f_n(x) \} \\
\text{s.t.} \quad x \in F
\]

The optimal decisions of Eq.(1) will likely be on the boundary of the feasible space. Small variations of these uncertainties changes the performances of these ‘optimal’ design resulting in undesired output variations. Assume the uncertainties in the design variables are in the forms of manufacturing tolerances that can be modeled as \(x \pm \Delta x \). The design decisions will also deviate from the original optima. Quantifying the variation in the object space is as important as selecting a Pareto optimum as the final result might not perform as expected. In fact, these uncertainty quantifications should be included in the decision-making process to ensure an optimal yet reliable outcome.

In \cite{7}, the authors develop an optimality influence range to quantify design variations in the object space. Optimal design alternatives are compared with not only their performances in the Pareto set and also their
variations in the optimality influence range. An influence signal-to-noise ratio is created to indicate the accordance of objective variations to the Pareto set and an influence area is calculated to quantify the variations of a design. The extensions of the optimality influence range to complex hierarchical systems are also demonstrated. However, the proposed method in [7] has two major challenges yet to be resolved. The first challenge is the extension of the optimality influence range to general n number of objective functions. When the object space has n degrees-of-freedom, the optimality influence range can exist in infinite number of forms. This is due to the fact that the original optimality influence range is created using the vector normal to the Pareto set at a design point. For $n = 2$, we can use this vector to create a unique optimality influence range. However, for $n > 2$, additional information is needed to yield an optimality influence range without ambiguity. The second challenge is that the optimality influence range using only the first order Taylor series expansion may not be accurate enough for highly nonlinear Pareto set.

In this work we resolve both challenges of the optimality influence range in [7] such that they can readily applicable to general nonlinear problems with n objective functions. In what follows, we will discuss the details of building an optimality influence range in Section 4. The new updated optimality influence range with higher-order Pareto approximations is developed in Section 5. The proposed method is demonstrated using a structural problem in Section 6, followed by the conclusions in Section 7.

4 Optimal Influence Range in Object Space

Design alternatives on a Pareto set are preferred if a design has good tendency to remain on the Pareto set within the prescribed tolerance regions. In this research, we define the optimality influence range (OIR) in Fig.1 that quantifies the consequences of design variations on the objectives. For a Pareto point, its objective variations due to Δx in the design space are shown with shadows representing uncertainty. The optimality influence range is a hyper-rectangle that encloses all the objective variations with an angle. Although the objective variations rarely have rectangle shapes due to nonlinearity of the functions, the optimality influence range is able to capture behaviors of objective functions under uncertainty. The unit vector \vec{s} is tangent to the Pareto set on the design point and \vec{n} is the vector perpendicular to \vec{s}. Since variations along \vec{s} direction tend to ‘stay’ on the Pareto set while along \vec{n} tend to deviate from the Pareto set, we define \vec{s} as signal vector and \vec{n} as noise vector. The lengths $\Delta s = \vec{s} \cdot \Delta f$ and $\Delta n = \vec{n} \cdot \Delta f$ are the signal variation and the noise variation, respectively.

![Figure 1: Optimality influence range](image)

An important criterion to describe the objective function variations is that differences in objective variations should be captured. In Fig.2, two design scenarios, A and B, on the Pareto set are shown with their variations in the object space. These two designs have different performances variations and different tendencies to remain on the Pareto set: Scenario B has better optimality ‘signal’ and less ‘noise’ than scenario A. In a previous work [6], these two design will end up having the same objective variation range (OVR) due to the fact that mathematical definition of OVR is unable to describe their variations away from the optima. This indicates the inability of OVR in quantifying variations in the objective space due to uncertainties in the variables/parameters. Our proposed optimality influence range extends the concept of OVR with better quantification of the variations of a Pareto point in the objective space. In this work we assume all problems have been properly scaled such that the difference between Fig.2(a) and Fig.2(b) are not the results of improper scaling.
4.1 Design Selection Assisted by Optimality Influence Range

Once OIR is constructed, two important criteria can be extracted, namely the influence range for the output variations and the influence signal-to-noise ratio for the tendency to remain on the Pareto set. Area covered by the OIR, denoted as the influence range, is used to compare two Pareto design alternatives. A design with smaller influence range generally means smaller objective variation and should be preferred by designers. This criterion can simply be computed using Eq.(2) based on the OIR.

\[
\text{influence area} = \Delta s \times \Delta n
\]

The unit vector \(\vec{s}\) is defined as the signal direction since variations along \(\vec{s}\) tend to stay on the Pareto set while variations along the noise vector \(\vec{n}\) move away from the Pareto set. With the signal and noise unit vector being defined, we introduce the influence signal-to-noise (S/N) ratio in Eq.(3) as the second criterion in selecting design alternatives.

\[
\text{influence S/N ratio} = \frac{\Delta s}{\Delta n}
\]

The influence S/N ratio differs from allowable increase/decrease in linear programming literature in that we focus on the compliance of a design to remain optimal [8]. By doing so, we allow the design to be varied and a design considering good performance is one that remains on the Pareto set under uncertainty. The allowable increase/decrease, on the other hand, focus on the limit of uncertainty by which the optimal design starts to change. A design with a large S/N ratio tends to remain on the Pareto set: they remain optimal but at different design point. Therefore our S/N ratio provides a better performance indication of how design behaves under uncertainty and how much attention designers should pay to alter the design.

4.2 Challenges for Nonlinear Pareto Set in Multiple Dimensions

The previous method creates an unique optimality influence range only in two-dimensional objective space. Engineering problems with more than two objective functions require additional modifications for the method to be applicable. In addition, the existing optimality influence range assumes the Pareto set is relatively linear. Significant errors might exist when applying the proposed method to highly nonlinear problems that result in Pareto sets with obvious curvatures.

More specifically, when using optimality influence range for general nonlinear multiobjective decision-making, we encounter the following limitations:

- OIR is constructed via an axis that is parallel to the first order approximation of the Pareto set at a given Pareto point. When the Pareto set is curvy, OIR will over estimate the object variation. As seen, the \(\Delta s\) in Fig.3(a) is more than the actual variation. The noise in OIR is not a true measure of the object variation. A new way to measure OIR noise is needed.

- For problems with \(n\) objective functions, the number of independent vectors required to construct OIR is \(n\). The normal vector to a Pareto point is generally the only available vector. The rest independent vectors need to be determined judiciously. When inappropriate vectors are chosen, the OIR will not be representative and could be over conservative.
5 Generalized Optimality Influence Range in Pareto Uncertainty Quantification

To ensure that the OIR appropriately quantifies the variation of a Pareto optimum with multiple dimensions, we develop a new method in constructing the OIR. The proposed method consists of the following steps:

Step 0. Select a Pareto optimum.

Step 1. Generate \(n_w \) number of \(n \)-dimensional vector to form a convex object variation space to represent OIR.

Step 2. Generate virtual samples in OIR from Step 1.

Step 3. Calculate the overall variation via the ‘range’ of these virtual samples.

Step 4. Perform quadratic approximation of the Pareto set at the Pareto optimum in Step 0.

Step 5. Calculate the noise via a distance measure from virtual samples to the Pareto approximation.

Step 6. Make engineering decisions using these quantifications.

Steps 1 to 3 relate to the range of an uncertainty in object space while steps 4 and 5 relate to how well the object variations comply to the Pareto set. In what follows, we will use the two-dimensional problem with two objective functions in Eq. (4) for presentation purpose. Both linear and nonlinear objective functions are included. The design space is formed by variable bounds as shown. Using the bi-objective demonstration does not restrict the proposed method to the general case. The extensions to general \(n \)-dimensional objective space will be described. The variations in \(x \) are \(\Delta x = [0.1, 0.1] \) in Eq. (4)

\[
\begin{align*}
\min_x & \quad f_1 = -5x_1 - 6x_2 \\
& \quad f_2 = 3x_1^2 + 2x_1x_2 + 4x_2^2 \\
\text{s.t.} & \quad -5 \leq x \leq 1 \\
& \quad x = [x_1, x_2]
\end{align*}
\] (4)

Step 1. Generate OIR

The original OIR rotates the variation range in the object space with an angle tangent to the Pareto set at a given design point. When dealing with nonlinear problems, the OIR still contains unattainable areas in the object space. In addition, the tangent plane in the original OIR can not justify an OIR with more than two objective functions.

The idea of the proposed OIR generation method is that the actual objective functions vary within a convex set of all possible sums of individual objective function with different weights. Let \(f^+ \) be the sum of the objective function with weights \(w \). The variation of the individual objective function due to the variations \(\Delta x \) in the design space results in the \(\Delta f^+ \) as in Eq. (5).

\[
\Delta f^+ = \sum_{i=1}^{n} w_i \Delta f_i
\] (5)
In the ideal case with infinite number of different weights \(w \), the OIR is the intersection of the convex set formed by:

\[
\text{OIR} : \bigcap_{k=1}^{\infty} \{ (w_k f + \Delta f_k^+) (w_k f - \Delta f_k^+ < 0) \}
\]

(6)

For each \(k \), the weights should satisfy \(\| w_k \| = 1 \). Instead of generating infinite number of weights, we create \(n_w \) number of independent vectors in the \(n \)-dimensional object space. Each set of \(\{ w_k, \Delta f_k^+ \} \) in Eq.(6) results in two parallel hyperplanes enclosing the real uncertainty variations. Figure 4 shows the convex object variation space with four different weights of the mathematical problem at the Pareto optimum \([-5.5, 2.25]\). The final OIR is also shown as the shaded area.

Step 2. Virtual Samples

The OIR constructed using Step 1 helps us refine the variation range in the object space. Quantifiable metrics are necessary in decision-making with OIR. We have developed the influence range and the influence signal-to-noise ratio in [7] to represent the overall variation and the compliance of the variation to the Pareto set, respectively. Since a new OIR is defined and the direct implementations of the methods in [7] are not practical, we propose to cast virtual samples in the OIR to quantify influence range. The original influence S/N ratio has been changed to focus on the noise only since the number of independent signal directions increases from 1 to \((n-1)\).

We first generate virtual samples (denoted as \(n_s \)) for the set of \([f \pm \Delta f] \) uniformly. Virtual samples that violate Eq.(6) are then filtered out. The remaining virtual samples (denoted as \(n_{sf} \)) will be evenly spread in the OIR. Figure 5(a) shows the 500 virtual samples before filtered and the remaining 80 samples after filtered are plotted in Fig.5(b) using the example in Eq.(4).

\[
\Omega : \{ P \in \mathbb{R}^n : f - \Delta f \leq P \leq f + \Delta f \}
\]

(7)

These virtual samples are ‘free’ in the sense that their generation does not require any simulation of the original problem. They only represent the convex set of OIR in Eq.(6). Once virtual samples are available, we use these samples to obtain necessary information of the space they represent. \(n_s \) is used to represent the variation range with no rotation (OVR) and \(n_{sf} \) represents OIR.

\[
\Omega_r : \{ P_r : \Omega \cap \text{OIR} \}
\]

(8)

Step 3. Range calculation

The range of a objective variations, \(I_r \), can be calculated using the Monte Carlo integration as shown in Eq.(9).

\[
I_r = \frac{n_{sf}}{n_s} \prod_{i=1}^{n} \Delta f_i
\]

(9)

Step 4. First and Second-order Pareto Approximation

The original OIR quantifies how well a design remains optimal under uncertainty using a signal-to-noise ratio with the first order Taylor series approximation of the Pareto set. The accuracy of the quantification can be improved if a higher order approximation is employed. This approximation does not require to be globally
accurate. Therefore we adopt the local Pareto approximation techniques by Utyuzhnikov et al. in [9]. To make the paper self-contained, we brief the procedures developed in the literature as follows.

Let the true Pareto set be \mathcal{S}. The Taylor-series approximation of \mathcal{S}, denoted as $\hat{\mathcal{S}}$ is:

$$\hat{\mathcal{S}} : f_n = f_n^* + \sum_{i=1}^{n-1} \frac{\partial f_n}{\partial f_i} (f_i - f_i^*) + \frac{1}{2} \sum_{j,k=1}^{n-1} \frac{\partial^2 f_n}{\partial f_j \partial f_k} (f_j - f_j^*) (f_k - f_k^*) + \text{h.o.t.} \quad (10)$$

where h.o.t. represents higher order terms, the current Pareto optimum is at $f^* = [f^*_1, f^*_2, \ldots, f^*_n]$, and the f_n is a function of f_1 to f_{n-1} mapping the nth objective function on the Pareto set. In other words, we can select one objective function and treat it as a dependent function of the rest of independent objectives. We use \tilde{f} to represent the set of independent objectives. f_n in Eq.(10) is then a function of \tilde{f} on the Pareto set.

Once the optimum on the Pareto \mathbf{f}^* is selected as the expansion point, the values of partial derivatives $\partial f_n / \partial f_i$ and $\partial^2 f_n / \partial f_j \partial f_k$ in Eq.(10) will need to be calculated to obtain the local Pareto approximation. The Pareto set follows the direction of $-\nabla \tilde{f}$ along the active constraints, \mathbf{g}_a. Gradient projection method is used to obtain the vector of $-\nabla \mathbf{f}$ projected on \mathbf{g}_a. Let \mathbf{P} be the projection matrix and $\mathbf{J} = \nabla \mathbf{g}_a$ be the Jacobian matrix of \mathbf{g}_a. \mathbf{P} can be calculated via:

$$\mathbf{P} = \mathbf{I} - \mathbf{J} (\mathbf{J} \mathbf{J}^T)^{-1} \mathbf{J} . \quad (11)$$

The projection of \tilde{f} onto the active constraints is denoted as $\mathbf{P} \nabla \tilde{f} = (\mathbf{P} \nabla f_1, \mathbf{P} \nabla f_2, \ldots, \mathbf{P} \nabla f_{n-1})$ where ∇f is an n_a-by-1 matrix. We then use $\mathbf{P} \nabla \tilde{f}$ to represent partial derivatives of \tilde{f} as

$$\partial \tilde{f} = (\mathbf{P} \nabla \tilde{f})^T \partial \mathbf{x} . \quad (12)$$

Define a matrix \mathbf{A} such that

$$\mathbf{A} \partial \tilde{f} = \partial \mathbf{x} . \quad (13)$$

$$\mathbf{(P} \nabla \tilde{f})^T \mathbf{A} \partial \tilde{f} = \partial \tilde{f} \quad (14)$$

After rearranging, we have

$$\mathbf{A} = \mathbf{P} \nabla \tilde{f} [(\mathbf{P} \nabla \tilde{f})^T \mathbf{P} \nabla \tilde{f}]^{-1} = \frac{\partial \mathbf{x}}{\partial \tilde{f}} \quad (15)$$

Let the ith column of \mathbf{A}, \mathbf{A}_i, be $\partial \mathbf{x} / \partial f_i$, the partial derivatives of the dependent objective function f_n with respect to the independent objective f_i as required in Eq.(10) can then be calculated via:

$$\frac{\partial f_n}{\partial f_i} = \mathbf{A}_i^T \nabla f_n \quad (16)$$

and

$$\frac{\partial^2 f_n}{\partial f_j \partial f_k} = \mathbf{A}_j^T \nabla (\mathbf{A}_k^T \nabla f_n) . \quad (17)$$

Figure 5 shows the first and the second order Pareto approximation results compared with the original Pareto set. The design point is at $[-5.5, 2.25]$. As can be see including the quadratic terms improves the approximation. When functions are highly nonlinear, the differences between the linear and the quadratic approximations will be more clear.
Step 5. Noise calculation

The local Pareto approximation with the virtual samples that represent the convex variation space enables the quantification of noise of a Pareto optimum. We define the noise I_n as the deviation of the objective variations away from the Pareto. Therefore the shortest distance between the Pareto approximation and the virtual samples are summed up in Eq.(18) as the noise measure in this work.

$$I_n = \sqrt{\frac{1}{n_{vf}} \sum_{k=1}^{n_{vf}} \left[d(P_{tk}, \hat{S}) \right]^2}$$ (18)

where $d(P, \hat{S})$ is calculated via the optimization process in Eq.(19). Although Eq.(19) needs to be calculated as many times as the number of virtual samples, it is a simple mathematical calculation that does not involve complex simulations. Both objective functions and the constraints in Eq.(19) are in at most quadratic forms, therefore the computation cost added with Eq.(19) is negligible.

$$d(P, \hat{S}) : \min_{f} \| f - P \|_2^2$$

s.t. $\hat{S}(f) = 0$ (19)

Step 6. Decision-making

From the Steps 0 to 5, we can obtain two uncertainty quantifications I_r and I_n. Decision-makers can then use these metrics along with other performances such as the objective function values to select an optimum from the Pareto set. With uncertainty quantification, the optimal selection will not only have an ideal performances but also ensure the ideal performances are within acceptable ranges under manufacturing uncertainties. Three optimal designs are selected from the Pareto set of Eq.(4) as shown in Fig.6. The design values, the objective function values, the objective variations as in OVR, the influence range, and the influence noise of the optima are listed in Table 1. If the variation in the object space is the main concern, the design C with the smallest influence range and the influence noise should be selected. These values can be taken into account in a more comprehensive decision-making with f_1 and f_2.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>Δf</th>
<th>I_r</th>
<th>I_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[0.79, 0.73]</td>
<td>[-8.36, 5.19]</td>
<td>1.08</td>
<td>0.12</td>
</tr>
<tr>
<td>B</td>
<td>[0.52, 0.48]</td>
<td>[-5.50, 2.25]</td>
<td>1.10</td>
<td>0.09</td>
</tr>
<tr>
<td>C</td>
<td>[0.25, 0.23]</td>
<td>[-2.64, 0.52]</td>
<td>1.10</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Δf: Objective variations; I_r: Influence range; I_n: Influence noise
The cross-section of the bars are

The three-bar structural problem as shown in Fig.7 is studied. The ends of all bar members are pin joints.

6 Engineering Case Study

Employing the second-order Pareto approximation. With nonlinear Pareto set and asymmetric tolerances in the engineering example to show the advantages of true when a relatively linear Pareto set with a symmetric tolerance are encountered. We will show the case seems to yield better results compared to 10^4 Monte Carlo simulation of the design variants. This is in fact true when a relatively linear Pareto set with a symmetric tolerance are encountered. We will show the case with nonlinear Pareto set and asymmetric tolerances in the engineering example to show the advantages of employing the second-order Pareto approximation.

Table 2 compares the influence range with OVR at three designs. As seen with different number of weights (8 for \(w^8\) and 38 for \(w^{38}\)), the influence range will be different. The OVR is the most conservative weighting combination that often leads to misunderstanding of the actual object variations. If we compare the influence noise with the first and the second order approximations \((T^1_{\text{OVR}}\) and \(T^2_{\text{OVR}}\)). We see that the first order approximation seems to yield better results compared to 10^4 Monte Carlo simulation of the design variants. This is in fact true when a relatively linear Pareto set with a symmetric tolerance are encountered. We will show the case with nonlinear Pareto set and asymmetric tolerances in the engineering example to show the advantages of employing the second-order Pareto approximation.

<table>
<thead>
<tr>
<th></th>
<th>(T^1_{\text{OVR}})</th>
<th>(T^4_{\text{OVR}})</th>
<th>(T^2_{\text{OVR}})</th>
<th>(T^4_{\text{MCS}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(w^8)</td>
<td>1.0231</td>
<td>0.1194</td>
<td>0.1297</td>
</tr>
<tr>
<td></td>
<td>(w^{38})</td>
<td>0.0920</td>
<td>0.0109</td>
<td>0.0243</td>
</tr>
<tr>
<td>B</td>
<td>(w^8)</td>
<td>0.6569</td>
<td>0.0923</td>
<td>0.0956</td>
</tr>
<tr>
<td></td>
<td>(w^{38})</td>
<td>0.0016</td>
<td>0.0002</td>
<td>0.0228</td>
</tr>
<tr>
<td>C</td>
<td>(w^8)</td>
<td>0.2672</td>
<td>0.0443</td>
<td>0.0530</td>
</tr>
<tr>
<td></td>
<td>(w^{38})</td>
<td>0.1134</td>
<td>0.0187</td>
<td>0.0286</td>
</tr>
</tbody>
</table>

The engineering design problem as adopted from [10] uses the cross-section areas of all bar members and the distance \(b\) between the fixed point of bar 1 and 2. All dimensions are shown in the figure.

Finite element method is required to construct the objective functions \(f_2\) and \(f_3\). The reduced stiffness matrix \(K\) and the reduced mass matrix \(M\) of the truss structure are:

\[
K = \sum_{i=1}^{3} \frac{Ea_i}{l_i} \begin{bmatrix} \cos \theta_i & \sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{bmatrix}
\]

\[
f_1(a, b) = \sum_{i=1}^{3} a_i l_i.
\]

Figure 7: Truss design example

The first objective function, the overall structural volume, is expressed as

\[
\min_{a, b} \{ f_1(a, b), f_2(a, b), f_3(a, b) \}
\]

s.t. \(\sigma_i \leq \sigma_{\text{max}}, \quad i = 1, 2, 3\)

\(0.8 \leq a_i \leq 3, \quad i = 1, 2, 3\)

\(0.5L \leq b \leq 1.5L\)

Eq.(20) shows the overall problem formulation. All bar members are of the same material with Young’s modulus \(E = 2.9 \times 10^7\) psi and density \(\rho = 7.324 \times 10^{-4}\) lbs/in^4.
and

\[M = \sum_{i=1}^{3} \frac{ρa_l}{6} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \]

(23)

, respectively where \(\theta_i \) is the angle between the bar member \(i \) and the horizontal plane. Assuming all bars are two-force elements and ignore the impact of the weight of bars, the displacement of \(P \) in \(x \) and in \(y \) direction, denoted as \(Q = [Q_x, Q_y]^T \), due to the external loading \(F = [W_1, W_2]^T \) can be obtained using Eq.(24).

\[KQ = F \]

(24)

The second objective function, the overall nodal displacement, can then be calculated via :

\[f_2(a, b) = \sqrt{Q_x^2 + Q_y^2} \]

(25)

The maximal stress required in the constraint to prevent failure can be calculated using

\[\sigma_i = \frac{E}{l_i} \begin{bmatrix} -\cos \theta_i & -\sin \theta_i & \cos \theta_i & \sin \theta_i \end{bmatrix} \begin{bmatrix} 0 & 0 & Q_x & Q_y \end{bmatrix}^T . \]

(26)

The third objective function, the fundamental frequency, first uses the eigenvalue(s) of the free vibration equation in

\[KU = \lambda MU. \]

(27)

to get the frequency \(\omega = \lambda^{1/2} \). The corresponding eigenvector \(U \) is the mode shape. The objective function \(f_3 \) is then

\[f_3(a, b) = -\min \left(\frac{\omega}{2\pi} \right) \]

(28)

Three Pareto optima are selected as shown in Table 3. As can be seen in Fig.8(a), the second-order Pareto approximations of all three designs are reasonably accurate. With variations from design variables being \(\Delta x = [\pm0.05, \pm0.05, \pm0.05, \pm0.36]^T \). The virtual samples in the object space are compared with the propagated Monte Carlo samples from the design space to the object space. For a three-dimensional space, different views should be provided to avoid any misleading. Therefore in this example we select design B and show the accuracy comparisons using different view angles in Fig.8(b), Fig.8(c), and Fig.8(d). The OIR for three design are also listed in Table 3. From the comparisons, we can see that design C has the largest variation range and the largest noise measure. That means if the Pareto design C is chosen by one designer, s/he would expect a higher impact compared to other design outcomes. Between design A and design B, A has less noise and B has better variation range. The choice between A and B has to yet to be determined by the designers with their own preferences.

Table 4 list the range and noise calculation compared with baseline using 1000 Monte Carlo design variants. As can be seen \(I_r \) is much smaller than OVR due to the rotation of axis. This differences not just numerically, it also affects the decision-making. For example design B has the largest variation using OVR but design C has the biggest \(I_r \). In addition, we also compare the noise calculation via the second order Pareto approximation versus

| Table 3: Three Pareto optimal anchor design |
|---|---|---|---|---|
| x | f | Δf | \(I_r \) | \(I_n \) |
| 2.2589 | 7.6131 | 0.0574 | 3.8421 | 0.0139 |
| A | 1.7752 | 5577.7682 | 145.1157 | 1.0720 |
| 1.9674 | -33.3364 | 0.1170 | 3.9782 | 0.0127 |
| 700.1611 | | | 1.0922 | |
| B | 1.5898 | 8.3634 | 146.7401 | 0.0208 |
| 1.9728 | 4248.8346 | 1.1170 | | |
| 1.1978 | -30.8129 | 3.9782 | | |
| 679.7170 | | 1.0922 | | |
| C | 1.8132 | 10.6143 | 142.3440 | 0.0208 |
| 1.1256 | 4330.8059 | 8.0282 | | |
| 1.6456 | -34.2751 | 1.4175 | | |
| 706.1090 | | | | |
via the first order approximation only. The noise levels in the OIR are I_{n1} and I_{n2} for the first and the second order approximations, respectively. As can be seen, the differences in noise measure between approximation methods are not significant. This is due to the fact that the Pareto set is smooth and the uncertainty is symmetric. For the same Pareto set with asymmetric, we can expect more clear distinctions.

When uncertainties are asymmetric with $\Delta x^+ = [0.1, 0.1, 0.1, 0.72]^T$ and $\Delta x^- = [0, 0, 0, 0]^T$, Table 5 shows the three Pareto design and their quantification results in the influence ranges. As can be seen the design C has the largest influence area followed by design B and A. The differences in the influence noise using the first and the second order approximation become more clear in asymmetric case. The second order approximation result is closer to that of Monte Carlo simulations. The first order approximation also pass through the center of the influence range and as a result overestimate the noise.

Table 5: Uncertainty quantifications with asymmetric tolerances

<table>
<thead>
<tr>
<th></th>
<th>I_n</th>
<th>OVR</th>
<th>I_n^1</th>
<th>I_n^2</th>
<th>T_{MCS}^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.4873</td>
<td>54.5526</td>
<td>0.0620</td>
<td>0.0571</td>
<td>0.0406</td>
</tr>
<tr>
<td>B</td>
<td>7.6627</td>
<td>129.2317</td>
<td>0.0594</td>
<td>0.0500</td>
<td>0.0314</td>
</tr>
<tr>
<td>C</td>
<td>15.3311</td>
<td>112.0077</td>
<td>0.0995</td>
<td>0.0894</td>
<td>0.0619</td>
</tr>
</tbody>
</table>

7 Conclusions

In this work we develop a systematic method to quantify uncertainty in the n-dimensional object space. The proposed optimality influence range extends the previous definition to cases with the number of objective functions $n > 2$. By rotating the original OIR with various weights, a much smaller convex space that contains the output variations is created. Virtual samples are generated to assist quantification of the OIR. An influence area that quantifies the ranges of the output variation and an influence noise that quantifies the compliance of the variation to the Pareto set are developed. We also extend the influence noise/range concept to nonlinear Pareto set with the second-order approximations. The quadratic local Pareto approximation method in the literature is also extended in this work to solve multi-objective engineering problems with black-box functions. These uncertainty quantification metrics can then be used in multiobjective decision-making.

8 Acknowledgements

This work is partially supported by the National Science Council in Taiwan with Grant Number NSC99-2221-E-006-031. This support is highly acknowledged.

9 References

(a) Three Pareto optima and their approximations

(b) Virtual samples in the f_1-f_2 plane

(c) Virtual samples in the f_1-f_3 plane

(d) Virtual samples in the f_2-f_3 plane

Figure 8: OIR of three Pareto design with symmetric uncertainties

