CONTENTS

PREFACE

1 The Development of Gallium Arsenide Devices and Integrated Circuits

1.1 Gallium Arsenide Device Development, 1

1.2 GaAs Foundry, 3

1.2.1 Private/Commercial Requirements, 3

1.2.2 Analog/Digital Designs, 3

1.2.3 Discrete Device/IC Production, 4

1.2.4 Process Capability, 4

1.2.5 Commercial Business, 4

1.2.6 Unique Characteristics, 5

2 Gallium Arsenide Crystal Structure and Growth

2.1 Introduction, 7

2.2 Crystal Structure, 7

2.3 Electron Energy-Band Structure, 13

2.3.1 Energy-Band Calculations and Experimental Results, 13

2.3.2 Direct and Indirect Intrinsic Gaps, 16

2.3.3 Characterization of Zone-center-Band Extrema, 18

2.3.4 Electron Effective Masses: Conduction-band System Statistical Weight, 21

2.3.5 Hole Effective Masses, 25

2.4 Electron and Hole Transport, 27

2.4.1 Hole Mobility, 27

2.4.2 Electron Velocity and Mobility, 29

2.4.3 Electrical Conductivity, 33
CONTENTS

2.5 Crystal Growth of Semi-Insulating GaAs from Melt, 36
2.5.1 Horizontal Bridgman Growth, 36
2.5.2 Horizontal Gradient Freeze, 37
2.5.3 Czochralski Crystal Growth, 38
2.5.4 Defect Densities in SI LEC GaAs, 42
2.6 EL2 Centers in GaAs, 43
2.6.1 Electrical Characteristics of EL2, 44
2.6.2 Experimental Properties, 48
2.6.3 Theoretical Models, 50

3 Epitaxial Growth Processes

3.1 Introduction to Epitaxial Growth Processes, 55
3.2 Molecular Beam Epitaxy, 56
3.2.1 MBE Growth Systems and Deposition Sources, 57
3.2.2 In situ Analysis, 60
3.2.3 Growth of III–V Compounds, 65
3.3 Metal–Organic Chemical Vapor Deposition, 75
3.3.1 Metal–Organic Sources, 75
3.3.2 Nonhydride Group-V Sources for MOCVD, 77
3.3.3 Basic Reactions, 82
3.3.4 Purity and Dopants, 84
3.4 Chemical Beam Epitaxy, 87
3.4.1 Chemical Beam Epitaxy System, 88
3.4.2 The Advantages of CBE, 90
3.4.3 Growth Kinetics of CBE, 90
3.4.4 Epilayer Morphologies of GaAs-Grown CBE, 92
3.4.5 Photo-CBE, 93
3.5 Atomic Layer Epitaxy and Molecular Layer Epitaxy, 94
3.5.1 Growth Process and Growth Apparatus, 94
3.5.2 Experiment, 96
3.5.3 Characteristics of Chloride ALE, 98
3.5.4 Atomic-Plane Doping, 98
3.5.5 Photo-Assisted Molecular Layer Epitaxy, 99
3.6 Vapor Transport Epitaxy, 104
3.6.1 Principle of Vapor Transport Epitaxy, 104
3.6.2 Experiment and Results, 106

4 Process Techniques

4.1 Introduction to Process Techniques, 115
4.2 Cleaning and Cleanliness, 116
4.2.1 Environment and Handling, 116
4.2.2 Cleaning Techniques, 117
4.2.3 Acids, Bases, and Pure Water Systems, 117
4.3 Etching, 119
4.3.1 Wet Etching, 119
4.3.2 Dry Etching, 123
CONTENTS

4.4 Plasma-Enhanced Deposition, 140
 4.4.1 dc/ac Glow Discharges, 141
 4.4.2 Frequency Effects on RF Plasma Reactor Behavior, 143
 4.4.3 Equipment for PECVD, 143
 4.4.4 Electron-Cyclotron-Resonance (ECR) Plasma CVD, 145
 4.4.5 Thin Film Deposition, 147

4.5 Rapid Thermal Process, 153
 4.5.1 n-Type Channel Implants, 154
 4.5.2 n⁺ Contact Implants, 154
 4.5.3 Slip Lines and Wafer Distortion, 155
 4.5.4 Rapid Thermal Processing Equipment, 157

5 Lithography
 5.1 Introduction to Lithography, 164
 5.2 Photolithography, 165
 5.2.1 Photolithographic Techniques, 165
 5.2.2 Photoresists, 167
 5.2.3 Advanced Image Reversal Techniques, 173
 5.3 Nonoptical Lithography, 178
 5.3.1 Electron-Beam Lithography, 180
 5.3.2 X-Ray Lithography, 189
 5.3.3 Ion-Beam Lithography, 193

6 Device-Related Physics and Principles
 6.1 Some Basic Electronic Concepts in Low-Dimensional Physics, 202
 6.2 Band Structure, Impurities, and Excitons in Superlattices, 205
 6.2.1 The Tight-Binding Approximation, 206
 6.2.2 The Envelope-Function Approximation, 208
 6.2.3 Bond-Orbital Models, 215
 6.2.4 Applications of the Bond-Orbital Model to Superlattices, 217
 6.2.5 Impurity and Exciton States in Heterostructures, 219
 6.2.6 Miniband Structure of a Superlattice, 222
 6.3 Scattering Theory, 228
 6.3.1 Basic Scattering Mechanisms, 228
 6.3.2 Scattering Theory from the Golden Rule, 229
 6.3.3 Scattering Rates and Mobility, 233
 6.3.4 Intravalley Scattering at High Fields, 234
 6.3.5 Intervalley Scattering, 237
 6.4 Ballistic Transport in GaAs Scattering, 239
 6.4.1 Hot-Electron Concept, 240
 6.4.2 Transport of a Single Particle, 242
 6.4.3 The Boltzmann Equation, 245
 6.4.4 Density Matrix Formulation, 252
 6.4.5 Feynman Path-Integral Formulation, 256
 6.4.6 Wigner Distribution Function, 259
 6.4.7 Moment Equation Approach, 261
6.5 The Monte Carlo Method, 263
 6.5.1 The Initial Conditions of Motion, 265
 6.5.2 Flight Duration and Self-scattering, 265
 6.5.3 The Choice of the Scattering Mechanism, 266
 6.5.4 Time Average for the Collection of Results under Steady State Conditions, 269
 6.5.5 Quantum Monte Carlo Approach, 269

7 Metal-to-GaAs Contacts 279

7.1 Electrical Properties of Metal–Semiconductor Contacts, 279
7.2 The Physics of Metal–GaAs Systems, 280
 7.2.1 Classical Models of the Interface, 280
 7.2.2 Schottky Contacts, 284
 7.2.3 Schottky Barrier Metals, 288
 7.2.4 Techniques for Barrier Height Measurement, 294
7.3 Unpinned Schottky Barrier Formation, 296
 7.3.1 Experiment, 297
 7.3.2 Results, 297
 7.3.3 Discussion, 300
 7.3.4 Implications for Schottky Barrier Models, 302
7.4 Ohmic Contact, 302
 7.4.1 Methods of Forming Ohmic Contacts, 303
 7.4.2 Alloyed Ohmic Contacts, 304
 7.4.3 Nonalloyed Ohmic Contacts, 310
 7.4.4 Ohmic Contact to p-GaAs, 312
 7.4.5 Measurement of the Specific Contact Resistance r_c, 315
7.5 Interconnect Metal Systems, 318
 7.5.1 First-Level Metal, 318
 7.5.2 Vias, 318
 7.5.3 Second-Level Metal, 319

8 GaAs Metal–Semiconductor Field-Effect TRANSISTOR 323

8.1 Introduction to MESFET, 323
8.2 Fabrication Technology, 324
 8.2.1 Self-aligned Ion Implantation, 324
 8.2.2 Recessed Channel Technology, 327
 8.2.3 Submicrometer Gate MESFET Fabrication, 329
8.3 Models, 331
 8.3.1 The Shockley Model, 331
 8.3.2 Analytic Models of GaAs MESFETs, 335
8.4 Parameter Extraction, 343
 8.4.1 Determination of FET Parameters, 343
 8.4.2 Optimization of MESFET Models, 345
8.5 Parasitic Effects, 351
 8.5.1 1/f Noise Component, 351
 8.5.2 Backgating Effects, 351
 8.5.3 Low-frequency Variations in Drain Conductance, 351
8.6 Noise Theory of GaAs MESFETs, 352
 8.6.1 Noise Equivalent Circuit of GaAs MESFETs, 352
 8.6.2 Minimum Noise Figure of the GaAs FET, 354
 8.6.3 Noise Modeling of MESFET, 359

9 High Electron-Mobility Transistor (HEMT) 365
 9.1 Introduction to HEMT, 365
 9.2 The Basic HEMT Structure, 366
 9.2.1 Principles of Modulation Doping, 366
 9.2.2 The Structure of a HEMT, 369
 9.3 Heterojunction Interface Sheet Carrier Concentration, 372
 9.4 Transport in HEMT Structures, 374
 9.4.1 Low Field Mobility in 2DEGs, 374
 9.4.2 2DEG Transport in Moderate Electric Fields, 374
 9.5 Capacitance-Voltage and Current-Voltage Characteristics, 375
 9.5.1 Charge Control Model, 377
 9.5.2 Equivalent Circuit and Figure of Merits, 379
 9.5.3 Transmission-Line Model, 379
 9.6 Persistent Photoconductivity and Drain I–V Collapse, 383
 9.7 Inverted HEMT, 383
 9.7.1 Crystal Growth, 384
 9.7.2 Device Characteristics, 385
 9.8 Pseudomorphic HEMT, 386
 9.8.1 Materials Consideration, 387
 9.8.2 Fabrication of a 0.1-µm Pseudomorphic HEMT, 389
 9.9 Pulsed-Doped HEMT, 391 (or called delta doping)
 9.10 Subthreshold Current in HEMT, 392
 9.11 VLSI GaAs HEMT ICs, 394

10 Heterojunction Bipolar Transistors 399
 10.1 Introduction to Heterojunction Bipolar Transistors, 399
 10.2 The Structures of Heterojunction Bipolar Transistors, 400
 10.2.1 Homojunction and Heterojunction Bipolar Transistors, 400
 10.2.2 The Collector-up Heterojunction Bipolar Structure, 401
 10.2.3 Double Heterojunction Bipolar Transistors, 402
 10.2.4 The GaInP/GaAs Heterojunction Bipolar, Transistor, 406
 10.3 Device Technology, 407
 10.3.1 Material Qualification, 408
 10.3.2 Surface Defects, 408
 10.3.3 Recombination Centers, 410
 10.3.4 Etch Control, 410
 10.3.5 Nonplanarity, 410
 10.3.6 Abrupt and Graded Band-gap HBTs, 411
 10.3.7 Carbon-Doped Base HBTs, 413
 10.4 Characteristics of Heterojunction Transistors, 415
 10.4.1 Basic Characteristics, 415
 10.4.2 Efficiency versus Collector Layer Thickness, 417
10.5 Figures of Merit for High-Frequency Transistors, 418
10.6 Power Density in the HBT, 420

11 Resonant-Tunneling Transistors

11.1 Introduction to Resonant-Tunneling Transistors, 423
11.2 Wave Property of Electrons and Resonant Tunneling, 424
11.3 Structure of the Resonant-Tunneling Diode, 426
 11.3.1 Resonant Tunneling through Parabolic Quantum Wells, 427
 11.3.2 The Double-Barrier Resonant-Tunneling Structures, 429
11.4 The Realization of Resonant-Tunneling Transistors, 433
 11.4.1 Resonant-Tunneling Hot-Electron Transistor, 433
 11.4.2 Asymmetric Barrier Structure, 435
 11.4.3 Resonant-Tunneling Bipolar Transistor, 436
 11.4.4 RHET Using InGaAs-Based Materials, 438
 11.4.5 Millimeter-Band Oscillations in a Resonant-Tunneling Device, 441

12 Hot-Electron Transistors and Novel Devices

12.1 Ballistic-Injection Devices, 446
 12.1.1 Metal-Base Transistors, 446
 12.1.2 Doped-Base Transistors, 447
 12.1.3 The Hot-Electron Camel Transistor, 448
 12.1.4 The Tunneling Hot-Electron Transfer Amplifier, 448
 12.1.5 Quantum Well Base Transistors, 451
12.2 Real-Space Transfer Devices, 454
 12.2.1 Charge-Injection Logic, 456
 12.2.2 Light-Emitting Charge-Injection Transistor, 456
12.3 Quantum Devices, 459
12.4 Quasi-One-Dimensional Channel Devices, 463
12.5 Quantum Interference Devices, 468
 12.5.1 Novel Properties and Geometrical Properties of LSSL, 469
 12.5.2 Mesoscopic Structures, 469
 12.5.3 Lateral-Surface-Superlattice Devices, 471
12.6 Quantum Point Contacts, 473
 12.6.1 Angular Distribution for a Single Quantum Contacts, 474
 12.6.2 Electron Wave Interference, 478

13 GaAs FET Amplifiers and Monolithic Microwave Integrated Circuits

13.1 Introduction to Monolithic Microwave Integrated Circuits, 483
13.2 Comparison of the Hybrid and Monolithic Approaches, 484
13.3 General Design Considerations, 486
13.4 Low-Noise Amplifier, 488
 13.4.1 Low-Noise Design, 488
 13.4.2 Noise, 495
 13.4.3 Low-Noise Amplifier Using HEMT, 496
13.5 High-Power GaAs MMIC, 500
 13.5.1 Nonlinearity in Class A Operation, 501
13.5.2 Dynamic Load Line and Thermal Effects, 502
13.5.3 RF Characteristics of Power GaAs FETs, 504
13.5.4 Design and Performance of GaAs Power FET Amplifiers, 505
13.5.5 Ka-Band Monolithic GaAs FET Power Amplifier Modules, 507
13.5.6 A HBT MMIC Power Amplifier, 511
13.6 Large-Signal Circuit Model for Nonlinear Analysis, 512
13.6.1 Harmonic-Balance Method, 513
13.6.2 Harmonic-Balance Simulation and Sensitivity Analysis, 514
13.6.3 Load-Pull Method, 518
13.6.4 Parameter-Extraction Program, 518
13.7 Applications of GaAs ICs, 520
13.7.1 Electronic Warfare Applications, 521
13.7.2 Commercial Applications, 522

14 GaAs Digital Integrated Circuits
14.1 Introduction, 528
14.2 High-Speed GaAs Devices and Integrated Circuits, 530
14.3 GaAs Logic Families, 532
14.3.1 Buffered FET Logic, 532
14.3.2 Schottky Diode FET Logic, 533
14.3.3 Direct Coupled Field-Effect Transistor Logic, 534
14.3.4 Source Coupled FET Logic, 535
14.3.5 Capacitive Coupled Logic, 538
14.3.6 Low Pinch-Off Voltage FET Logic, 539
14.3.7 Heterojunction Bipolar Logic, 539
14.3.8 GaAs Gate Array, 540
14.4 Gallium Arsenide Circuits, 542
14.4.1 GaAs Static Random Access Memory, 542
14.4.2 Data Conversion Circuits, 547
14.4.3 Data Communication Chip Set, 549
14.5 GaAs Microprocessor, 549
14.6 Digital Packaging, 554
14.6.1 Multilayer Ceramic Packaging, 554
14.6.2 Multichip Packaging, 554
14.6.3 Special Packaging, 558

15 High-Speed Photonic Devices
15.1 Introduction to Photonic Devices, 562
15.2 Light-Emitting Diodes, 563
15.2.1 Device Structures, 563
15.2.2 Modulation Characteristics, 565
15.3 Semiconductor Lasers, 566
15.3.1 Basic Semiconductor Laser Physics, 568
15.3.2 Laser Structures, 573
15.3.3 Strained-Layer Quantum Well Heterojunction Lasers, 576
15.3.4 Surface-Emitting Laser, 577
15.4 Pin Photodetectors, 578
15.4.1 Basic Principles, 578
15.4.2 Stability and Output Power of Pin-Avalanche Diodes, 582
15.5 Avalanche Photodiodes, 587
15.6 Hybrid Integration, 589
15.6.1 Grafted-film Process, 589
15.6.2 Device Fabrication, 590
15.6.3 Bonding by Atomic Rearrangement, 591
15.7 Optical Interconnects, 592
15.7.1 Network Requirements, 593
15.7.2 Optoelectronic Transducers, 593
15.7.3 Optoelectronic Interfaces, 594
15.7.4 Monolithic Integration of Functions, 594
15.7.5 High-Density Packaging, 595
15.7.6 Future Directions, 598
15.8 Quantum Well Optical Modulators, 599
15.8.1 Principles of Quantum Well Optical Modulators, 599
15.8.2 Symmetric Self-electrooptic Effect Devices, 601

Index